
SIMETRIX SIMULATOR REFERENCE MANUAL

VERSION 9.1

NOVEMBER 2022

SIMETRIX SIMULATOR REFERENCE MANAUL

COPYRIGHT © SIMETRIX TECHNOLOGIES LTD. 1992-2022

Trademarks:
PSpice is a trademark of Cadence Design Systems Inc.
Hspice is a trademark of Synopsis Inc.

SIMetrix Technologies Ltd.,
78 Chapel Street,
Thatcham,
Berkshire
RG18 4QN
United Kingdom

Tel: +44 1635 866395

Fax: +44 1635 868322

Email: support@simetrix.co.uk

Web: http://www.simetrix.co.uk

SIMetrix Simulator Reference Manual

mailto:support@simetrix.co.uk
http://www.simetrix.co.uk

Contents

Contents

1 Introduction 1
1.1 Overview . 1
1.2 The SIMetrix Simulator - What is it? . 1
1.3 What is in This Manual . 1

2 Running the Simulator 2
2.1 Simulator and Schematic Editor . 2

2.1.1 Adding Extra Netlist Lines . 2
2.1.2 Displaying Net and Pin Names . 2
2.1.3 Editing Device Parameters . 3
2.1.4 Editing Literal Values - Using shift-F7 . 3

2.2 Running in non-GUI Mode . 4
2.2.1 Overview . 4
2.2.2 Important Licensing Information . 4
2.2.3 Syntax . 4
2.2.4 Aborting . 6
2.2.5 Reading Data . 6

2.3 Configuration Settings . 6
2.3.1 Global Settings . 7
2.3.2 Data Buffering . 7

2.4 Netlist Format . 8
2.4.1 File Format . 8
2.4.2 Encoding and International Characters . 8
2.4.3 Language Declaration . 9
2.4.4 Comments . 9
2.4.5 Device Lines . 9
2.4.6 Simulator Statements . 11

2.5 Simulator Output . 11
2.5.1 The List File . 11
2.5.2 The Binary Data File . 12
2.5.3 Output Data Names . 12

2.6 Controlling Data Saved . 14

3 Simulator Devices 15
3.1 Overview . 15
3.2 Using XSPICE Devices . 15

3.2.1 Vector Connections . 15
3.2.2 Connection Types . 16

3.3 Using Expressions . 17
3.3.1 Overview . 17
3.3.2 Using Expressions for Device Parameters . 17
3.3.3 Using Expressions for Model Parameters . 17
3.3.4 Expression Syntax . 18
3.3.5 Examples . 26

i
SIMetrix Simulator Reference Manual

Contents

3.3.6 Optimisation . 29
3.4 Subcircuits . 30

3.4.1 Overview . 30
3.4.2 Subcircuit Definition . 30
3.4.3 Subcircuit Instance . 31
3.4.4 Passing Parameters to Subcircuits . 31
3.4.5 Nesting Subcircuits . 32
3.4.6 Global Nodes . 32
3.4.7 Subcircuit Preprocessing . 32

3.5 Model Binning . 33
3.5.1 Overview . 33
3.5.2 Defining Binned Models . 33
3.5.3 Example . 33

3.6 Language Differences . 34
3.6.1 Inline Comment . 34
3.6.2 Unlabelled Device Parameters . 34
3.6.3 LOG() and PWR() . 35

3.7 Customising Device Configuration . 35
3.7.1 Overview . 35

3.8 Initial Conditions . 35
3.8.1 Node Initial Condition . 36
3.8.2 Capacitor Initial Condition . 36
3.8.3 Inductor Initial Condition . 37

4 Analog Device Reference 39
4.1 Overview . 39
4.2 Further Documentation . 39
4.3 ASM HEMT Gallium Nitride FET Model . 39

4.3.1 Netlist Entry . 39
4.3.2 Model Syntax . 40
4.3.3 Notes . 40

4.4 AC Table Lookup . 40
4.4.1 Netlist Entry . 40
4.4.2 Model Format . 40
4.4.3 AC Table Notes . 41

4.5 Arbitrary Source . 41
4.5.1 Netlist Entry . 41
4.5.2 Notes on Arbitrary Expression . 42
4.5.3 Charge and Flux Devices . 43
4.5.4 Arbitrary Source Examples . 43
4.5.5 PSpice and Hspice syntax . 45

4.6 Bipolar Junction Transistor . 46
4.6.1 Netlist Entry . 46
4.6.2 NPN BJT Model Syntax . 46
4.6.3 PNP BJT Model Syntax . 46
4.6.4 Lateral PNP BJT Model Syntax . 46
4.6.5 BJT Model Parameters . 46
4.6.6 Hspice Temperature Parameters . 49
4.6.7 Notes . 51

4.7 Bipolar Junction Transistor . 51
4.7.1 Netlist Entry . 51
4.7.2 Model Syntax . 52
4.7.3 Model Parameters . 52
4.7.4 Notes . 55

4.8 Bipolar Junction Transistor . 55
4.8.1 Netlist Entry . 55

ii
SIMetrix Simulator Reference Manual

Contents

4.8.2 Model Syntax . 55
4.8.3 Model Parameters . 56
4.8.4 Notes . 56

4.9 Bipolar Junction Transistor . 56
4.10 Bipolar Junction Transistor . 56

4.10.1 Netlist Entry . 56
4.10.2 NPN Model Syntax . 56
4.10.3 PNP Model Syntax . 57
4.10.4 Notes . 57

4.11 Capacitor . 57
4.11.1 Netlist Entry . 57
4.11.2 Model Syntax . 58
4.11.3 Model Parameters . 58

4.12 Controlled Current Source . 58
4.12.1 Netlist Entry . 58
4.12.2 Example . 59
4.12.3 Polynomial Specification . 60

4.13 Current Controlled Voltage Source . 60
4.13.1 Netlist Entry . 60

4.14 Current Source . 61
4.14.1 Netlist Entry . 61

4.15 Diode - Level 1 and Level 3 . 62
4.15.1 Netlist Entry . 62
4.15.2 Examples . 63
4.15.3 Diode Model Syntax . 63
4.15.4 Diode Model Parameters - Level = 1 . 63
4.15.5 Diode Model Parameters - Level = 3 . 64
4.15.6 Using Hspice Diodes . 66

4.16 Diode - Soft Recovery . 66
4.16.1 Netlist Entry . 66
4.16.2 Diode Model Syntax . 66
4.16.3 Soft Recovery Diode Model Parameters . 66
4.16.4 Basic Equations . 67
4.16.5 References . 67

4.17 Diode CMC . 67
4.17.1 Netlist Entry . 67
4.17.2 Diode Model Syntax . 67

4.18 Diode - Perfect . 67
4.18.1 Netlist Entry . 68
4.18.2 Perfect Diode Model Syntax . 68
4.18.3 Perfect Diode Model Parameters . 68
4.18.4 Basic Equations . 68
4.18.5 Notes . 68

4.19 Inductor (Ideal) . 68
4.19.1 Netlist Entry . 68
4.19.2 See Also . 69

4.20 Inductor (Saturable) . 69
4.20.1 Netlist Entry . 69
4.20.2 Model format - Jiles-Atherton model with hysteresis 69
4.20.3 Model format - simple model without hysteresis 69
4.20.4 Jiles-Atherton Parameters . 69
4.20.5 Non-hysteresis Model Parameters . 70
4.20.6 Notes on the Jiles-Atherton model . 70
4.20.7 Notes on the non-hysteresis model . 71
4.20.8 Implementing Transformers . 71
4.20.9 Plotting B-H curves . 71

iii
SIMetrix Simulator Reference Manual

Contents

4.20.10 References . 71
4.21 Inductor (Table lookup) . 71

4.21.1 Netlist Entry . 71
4.21.2 Model syntax . 72
4.21.3 Boundary Inductance . 72
4.21.4 Smoothing Function . 72

4.22 IGBT . 73
4.22.1 Netlist Entry . 73
4.22.2 Model syntax . 74
4.22.3 Notes . 74

4.23 Junction FET . 74
4.23.1 Netlist Entry . 74
4.23.2 N Channel JFET: Model Syntax . 75
4.23.3 P Channel JFET: Model Syntax . 75
4.23.4 JFET: Model Parameters . 75
4.23.5 Examples . 76

4.24 Laplace Transfer Function - Lumped Implementation . 76
4.24.1 Netlist entry . 76
4.24.2 Connection details . 76
4.24.3 Model format . 77
4.24.4 Model parameters . 77
4.24.5 Description . 77
4.24.6 Examples . 77
4.24.7 The Laplace Expression . 81
4.24.8 Defining the Laplace Expression Using Coefficients 82
4.24.9 Other Model Parameters . 82
4.24.10 Limitations . 82
4.24.11 Implementation . 82

4.25 Laplace Transfer Function - Convolution Implementation 83
4.25.1 Netlist Entry . 83
4.25.2 Model Syntax . 83
4.25.3 Model Parameters . 84
4.25.4 Laplace transfer function . 85
4.25.5 Implementation . 88
4.25.6 Impulse Response . 88
4.25.7 Run Time Error Control . 91
4.25.8 PSpice LAPLACE and FREQ compatibility . 91

4.26 Lossy Transmission Line . 91
4.26.1 SPICE3 LTRA Lossy Transmission Line . 91
4.26.2 Subcircuit-based RLGC Model . 91

4.27 MOSFET . 92
4.27.1 Netlist Entry . 92
4.27.2 NMOS Model Syntax . 93
4.27.3 PMOS Model Syntax . 93
4.27.4 MOS Levels 1, 2 and 3: Model Parameters . 93
4.27.5 CJ Default . 95
4.27.6 Gate Charge Model, Levels 1, 2 and 3 . 95
4.27.7 Notes for levels 1, 2 and 3: . 95
4.27.8 MOS Level 17: Model Parameters . 96
4.27.9 Notes for level 17 . 97

4.28 BSIM3 MOSFETs . 98
4.28.1 Notes . 98
4.28.2 Version Selector . 98
4.28.3 Model Parameters . 99
4.28.4 Further Documentation . 99
4.28.5 Process Binning . 99

iv
SIMetrix Simulator Reference Manual

Contents

4.29 BSIM4 MOSFETs . 100
4.29.1 Notes . 100
4.29.2 Further Documentation . 100
4.29.3 Process Binning . 100
4.29.4 Mapping to Level 54 for Hspice . 101

4.30 BSIM-BULK MOSFET (formerly BSIM6) . 101
4.30.1 Netlist Entry . 101
4.30.2 NMOS Model Syntax . 101
4.30.3 PMOS Model Syntax . 101
4.30.4 Notes . 101

4.31 BSIM-CMG MOSFET (FinFET) . 102
4.31.1 Netlist Entry . 102
4.31.2 NMOS Model Syntax . 102
4.31.3 PMOS Model Syntax . 102
4.31.4 Notes . 102

4.32 HiSim HV MOSFET . 102
4.32.1 Netlist Entry . 102
4.32.2 NMOS Model Syntax . 102
4.32.3 PMOS Model Syntax . 103
4.32.4 Notes . 103

4.33 PSP MOSFET . 103
4.33.1 Netlist Entry . 104
4.33.2 NMOS Model Syntax Version 101.0 . 104
4.33.3 PMOS Model Syntax Version 101.0 . 104
4.33.4 NMOS Model Syntax Version 102.3 . 104
4.33.5 PMOS Model Syntax Version 102.3 . 104
4.33.6 Notes . 104

4.34 MOSFET GMIN Implementation . 105
4.35 Resistor . 105

4.35.1 Netlist Entry . 106
4.35.2 Notes . 106
4.35.3 Resistor Model Syntax . 106
4.35.4 Resistor Model Parameters . 106
4.35.5 Notes . 107

4.36 Resistor - Hspice Compatible . 107
4.36.1 Netlist Entry . 107
4.36.2 Resistor Model Syntax . 108
4.36.3 Resistance Calculation . 109
4.36.4 Capacitance Calculation . 110
4.36.5 Temperature Scaling . 111
4.36.6 Flicker Noise . 111
4.36.7 ACRESMOD Parameter . 111
4.36.8 Making the Hspice Resistor the Default . 111

4.37 CMC Resistor . 112
4.37.1 Netlist entry . 112
4.37.2 Model Format . 112

4.38 Subcircuit Instance . 112
4.38.1 Netlist Entry . 112

4.39 Transmission Line . 113
4.39.1 Netlist Entry . 113
4.39.2 Example . 113

4.40 Voltage Controlled Current Source . 113
4.40.1 Netlist Entry . 113
4.40.2 PSpice Syntax . 114

4.41 Voltage Controlled Switch . 114
4.41.1 Netlist Entry . 114

v
SIMetrix Simulator Reference Manual

Contents

4.41.2 Voltage Controlled Switch Model Syntax . 114
4.41.3 Voltage Controlled Switch Model Parameters . 115
4.41.4 Voltage Controlled Switch Notes . 115

4.42 Voltage Controlled Switch - Perfect . 116
4.42.1 Netlist Entry . 116
4.42.2 Perfect Voltage Controlled Switch Model Syntax 116
4.42.3 Perfect Voltage Controlled Switch Model Parameters 116
4.42.4 Perfect Voltage Controlled Switch Notes . 116

4.43 Voltage Controlled Source . 117
4.43.1 Netlist Entry . 117
4.43.2 PSpice Syntax . 117

4.44 Voltage Source . 118
4.44.1 Netlist Entry . 118
4.44.2 Pulse Source . 118
4.44.3 Piece-Wise Linear Source . 119
4.44.4 PWL File Source . 120
4.44.5 Sinusoidal Source . 121
4.44.6 Exponential Source . 122
4.44.7 Single Frequency FM . 123
4.44.8 Noise Source . 123
4.44.9 Extended PWL Source . 123

4.45 Mutual Inductor . 125
4.45.1 Netlist Entry . 125
4.45.2 Notes . 126
4.45.3 Example . 126

4.46 Verilog-HDL Interface (VSXA) . 127
4.46.1 Overview . 127
4.46.2 Analog Input Interface . 129
4.46.3 Analog Output Interface . 129
4.46.4 Data Vector Output . 130
4.46.5 Module Cache . 131

4.47 NXP Compact Models . 132
4.47.1 Introduction . 132
4.47.2 SIMKIT Devices . 132
4.47.3 Notes on SIMKIT Models . 138

4.48 LTspice® Devices . 139
4.48.1 LTspice® Notes . 140

5 Digital/Mixed Signal Device Ref 141
5.1 Device Overview . 141

5.1.1 Common Parameters . 141
5.1.2 Delays . 142

5.2 And Gate . 142
5.2.1 Netlist entry: . 143
5.2.2 Connection details . 143
5.2.3 Model format . 143
5.2.4 Model parameters . 143
5.2.5 Device operation . 143

5.3 D-type Latch . 144
5.3.1 Netlist entry . 144
5.3.2 Connection details . 144
5.3.3 Model format . 144
5.3.4 Model parameters . 144
5.3.5 Device Operation . 145

5.4 D-type Flip Flop . 146
5.4.1 Netlist entry . 146

vi
SIMetrix Simulator Reference Manual

Contents

5.4.2 Connection details . 146
5.4.3 Model format . 146
5.4.4 Model parameters . 146
5.4.5 Device Operation . 147

5.5 Buffer . 147
5.5.1 Netlist entry . 148
5.5.2 Connection details . 148
5.5.3 Model format . 148
5.5.4 Model parameters . 148
5.5.5 Device Operation . 148

5.6 Frequency Divider . 149
5.6.1 Netlist entry . 149
5.6.2 Connection details . 149
5.6.3 Model format . 150
5.6.4 Model parameters . 150
5.6.5 Device Operation . 150

5.7 Initial Condition . 151
5.7.1 Netlist entry . 151
5.7.2 Connection details . 151
5.7.3 Model format . 151
5.7.4 Model parameters . 151
5.7.5 Device Operation . 151

5.8 Digital Pulse . 151
5.8.1 Netlist entry . 151
5.8.2 Connection details . 151
5.8.3 Instance parameters . 152
5.8.4 Model format . 152
5.8.5 Model parameters . 152
5.8.6 Device Operation . 152

5.9 Digital Signal Source . 152
5.9.1 Netlist entry . 153
5.9.2 Connection details . 153
5.9.3 Model format . 153
5.9.4 Model parameters . 153
5.9.5 Device Operation . 153
5.9.6 File Format . 153
5.9.7 Example . 154

5.10 Inverter . 155
5.10.1 Netlist entry . 155
5.10.2 Connection details . 155
5.10.3 Model format . 155
5.10.4 Model parameters . 155
5.10.5 Device Operation . 156

5.11 JK Flip Flop . 156
5.11.1 Netlist entry . 156
5.11.2 Connection details . 156
5.11.3 Model format . 157
5.11.4 Model parameters . 157
5.11.5 Device Operation . 157

5.12 Arbitrary Logic Block . 159
5.12.1 Netlist entry . 159
5.12.2 Connection details . 159
5.12.3 Instance Parameters . 160
5.12.4 Model format . 160
5.12.5 Model parameters . 160
5.12.6 Device Operation . 160

vii
SIMetrix Simulator Reference Manual

Contents

5.13 Nand Gate . 161
5.13.1 Netlist entry . 161
5.13.2 Connection details . 161
5.13.3 Model format . 161
5.13.4 Model parameters . 161
5.13.5 Device operation . 161

5.14 Nor Gate . 162
5.14.1 Netlist entry . 162
5.14.2 Connection details . 162
5.14.3 Model format . 162
5.14.4 Model parameters . 162
5.14.5 Device operation . 163

5.15 Open-Collector Buffer . 163
5.15.1 Netlist entry . 163
5.15.2 Connection details . 163
5.15.3 Model format . 163
5.15.4 Model parameters . 163
5.15.5 Device Operation . 163

5.16 Open-Emitter Buffer . 164
5.16.1 Netlist entry . 164
5.16.2 Connection details . 164
5.16.3 Model format . 164
5.16.4 Model parameters . 164
5.16.5 Device Operation . 164

5.17 Or Gate . 165
5.17.1 Netlist entry . 165
5.17.2 Connection details . 165
5.17.3 Model format . 165
5.17.4 Model parameters . 165
5.17.5 Device operation . 166

5.18 Pulldown Resistor . 166
5.18.1 Netlist entry . 166
5.18.2 Connection details . 166
5.18.3 Model format . 166
5.18.4 Model parameters . 166
5.18.5 Device Operation . 166

5.19 Pullup Resistor . 166
5.19.1 Netlist entry . 167
5.19.2 Connection details . 167
5.19.3 Model format . 167
5.19.4 Model parameters . 167
5.19.5 Device Operation . 167

5.20 Random Access Memory . 167
5.20.1 Netlist entry . 167
5.20.2 Connection details . 167
5.20.3 Model format . 168
5.20.4 Model parameters . 168
5.20.5 Device Operation . 168

5.21 Set-Reset Flip-Flop . 168
5.21.1 Netlist entry . 168
5.21.2 Connection details . 168
5.21.3 Model format . 169
5.21.4 Model parameters . 169
5.21.5 Device Operation . 169

5.22 SR Latch . 171
5.22.1 Netlist entry . 171

viii
SIMetrix Simulator Reference Manual

Contents

5.22.2 Connection details . 171
5.22.3 Model format . 171
5.22.4 Model parameters . 171
5.22.5 Device Operation . 172

5.23 State Machine . 172
5.23.1 Netlist entry . 172
5.23.2 Connection details . 172
5.23.3 Model format . 172
5.23.4 Model parameters . 172
5.23.5 File Syntax . 173
5.23.6 Notes . 173

5.24 Toggle Flip Flop . 174
5.24.1 Netlist entry . 174
5.24.2 Connection details . 174
5.24.3 Model format . 174
5.24.4 Model parameters . 174
5.24.5 Device Operation . 175

5.25 Tri-State Buffer . 176
5.25.1 Netlist entry . 176
5.25.2 Connection details . 176
5.25.3 Model format . 176
5.25.4 Model parameters . 176
5.25.5 Device Operation . 177

5.26 Exclusive NOR Gate . 177
5.26.1 Netlist entry . 177
5.26.2 Connection details . 177
5.26.3 Model format . 177
5.26.4 Model parameters . 178
5.26.5 Device Operation . 178

5.27 Exclusive OR Gate . 178
5.27.1 Netlist entry . 178
5.27.2 Connection details . 178
5.27.3 Model format . 179
5.27.4 Model parameters . 179
5.27.5 Device Operation . 179

5.28 Analog-Digital Converter . 179
5.28.1 Netlist entry . 179
5.28.2 Connection details . 179
5.28.3 Model format . 180
5.28.4 Model parameters . 180
5.28.5 Device Operation . 180

5.29 Analog-Digital Interface Bridge . 182
5.29.1 Netlist entry . 182
5.29.2 Connection details . 182
5.29.3 Model format . 182
5.29.4 Model parameters . 182
5.29.5 Device Operation . 183
5.29.6 Analog input load . 183
5.29.7 Input clamp . 183
5.29.8 Time Step Control - TIME_TOL parameter . 183

5.30 Digital-Analog Converter . 186
5.30.1 Netlist entry . 186
5.30.2 Connection details . 186
5.30.3 Model format . 186
5.30.4 Model parameters . 187
5.30.5 Device Operation . 187

ix
SIMetrix Simulator Reference Manual

Contents

5.31 Digital-Analog Interface Bridge . 189
5.31.1 Netlist entry . 190
5.31.2 Connection details . 190
5.31.3 Model format . 190
5.31.4 Model parameters . 190
5.31.5 DC characteristics . 191
5.31.6 Switching Characteristics . 192

5.32 Controlled Digital Oscillator . 192
5.32.1 Netlist entry . 192
5.32.2 Connection details . 192
5.32.3 Instance Parameters . 193
5.32.4 Model format . 193
5.32.5 Model parameters . 193
5.32.6 Device Operation . 193
5.32.7 Time Step Control . 194

5.33 Analog-Digital Schmitt Trigger . 194
5.33.1 Netlist entry . 194
5.33.2 Connection details . 194
5.33.3 Model format . 194
5.33.4 Model parameters . 194
5.33.5 Device Operation . 195

6 Command Reference 196
6.1 Overview . 196
6.2 General Sweep Specification . 197

6.2.1 Overview . 197
6.2.2 Syntax . 198

6.3 Multi Step Analyses . 199
6.3.1 Overview . 199
6.3.2 Syntax . 200
6.3.3 Syntax - Optimiser . 201

6.4 .AC . 202
6.4.1 Syntax . 202
6.4.2 Notes . 202
6.4.3 Examples . 202
6.4.4 Examples of Nested Sweeps . 203

6.5 .ALIAS . 203
6.5.1 Syntax . 203
6.5.2 Example . 203

6.6 .DATA . 204
6.6.1 Example . 205

6.7 .DC . 205
6.7.1 Syntax . 205
6.7.2 Examples . 206
6.7.3 Examples of Nested Sweeps . 206

6.8 .FILE and .ENDF . 207
6.8.1 Syntax . 207
6.8.2 Example . 207
6.8.3 Important Note . 207
6.8.4 Using with SIMPLIS . 207

6.9 .FUNC . 207
6.9.1 Examples . 208
6.9.2 Optimiser . 208

6.10 .GLOBAL . 208
6.11 .GRAPH . 208

6.11.1 Parameters . 208

x
SIMetrix Simulator Reference Manual

Contents

6.11.2 Using Multiple .GRAPH Statements . 213
6.11.3 Creating X-Y Plots . 213
6.11.4 Using .GRAPH in Subcircuits . 213
6.11.5 Using Expressions with .GRAPH . 213
6.11.6 Plotting Spectra with .GRAPH . 214

6.12 .IC . 214
6.12.1 Alternative Initial Condition Implementations . 215

6.13 .INC . 215
6.14 .KEEP . 216

6.14.1 Option Settings . 217
6.15 .LOAD . 219
6.16 .LIB . 219

6.16.1 SIMetrix Native Form . 219
6.16.2 HSPICE Form . 220

6.17 .MAP . 220
6.17.1 .MAP Notes . 221
6.17.2 Device Configuration File . 221
6.17.3 List of All Simulator Devices . 222

6.18 .MODEL . 223
6.18.1 XSPICE Model Types . 223
6.18.2 SPICE Model Types . 224
6.18.3 Safe Operating Area (SOA) Limits . 225
6.18.4 Example . 225

6.19 .NOCONV . 225
6.20 .NODESET . 226
6.21 .NOISE . 227

6.21.1 Notes . 228
6.21.2 Device vector name suffixes . 228
6.21.3 Creating Noise Info File . 229
6.21.4 Examples . 229

6.22 .OP . 229
6.22.1 ‘OFF’ Parameters . 230
6.22.2 Nodesets . 230
6.22.3 Initial Conditions . 230
6.22.4 Operating Point Output Info . 230

6.23 .OPTIMISER . 231
6.24 .OPTIONS . 232

6.24.1 List of simulator options . 232
6.25 .OPTSPEC . 251
6.26 Notes . 252
6.27 .PARAM . 252

6.27.1 Examples . 252
6.27.2 Netlist Order . 252
6.27.3 Subcircuit Parameters . 253
6.27.4 Using .PARAM in Schematics . 253
6.27.5 .PARAM in Libraries . 253

6.28 .POST_PROCESS . 254
6.28.1 Important Note . 254

6.29 .PRINT . 254
6.29.1 Notes . 254
6.29.2 Examples . 256

6.30 .SENS . 256
6.31 .SETSOA . 256

6.31.1 Examples . 260
6.32 .SUBCKT and .ENDS . 261
6.33 .TEMP . 262

xi
SIMetrix Simulator Reference Manual

Contents

6.34 .TF . 262
6.34.1 Notes . 262
6.34.2 Examples . 263

6.35 .TRACE . 263
6.35.1 Examples . 264
6.35.2 Notes . 264

6.36 .TRAN . 264
6.36.1 Fast Start . 265
6.36.2 Snapshots . 266

6.37 Real Time Noise Analysis . 266
6.37.1 Example . 266
6.37.2 Test Results . 267
6.37.3 Real Time Noise Notes . 267

7 Monte Carlo, Sensitivity and Worst-case 271
7.1 Overview . 271
7.2 Monte Carlo Analysis . 272

7.2.1 Multi-step . 272
7.2.2 Single Step Sweep . 272
7.2.3 Monte Carlo Log File . 273
7.2.4 Seeding the Random Number Generator . 273

7.3 Sensitivity and Worst-case Analyses . 273
7.3.1 General Operation . 273
7.3.2 Multi-step . 274
7.3.3 Single Step Sweep . 276
7.3.4 Sensitivity Measurement Functions . 276

7.4 Specifying Tolerances . 276
7.4.1 Overview . 277
7.4.2 Distribution Functions . 277
7.4.3 Hspice Distribution Functions . 283
7.4.4 TOL, MATCH and LOT Device Parameters . 284

8 Optimisation 286
8.1 Introduction . 286
8.2 Optimiser Modes . 286

8.2.1 Single analysis mode . 286
8.2.2 Single analysis mode - Example . 287
8.2.3 Multi-analysis Mode . 289
8.2.4 Multi-analysis Mode - Example . 289

8.3 Algorithms . 293
8.3.1 List of Available Algorithms . 293

9 Convergence, Accuracy and Performance 295
9.1 Overview . 295
9.2 DC Operating Point . 295

9.2.1 Overview . 296
9.2.2 Source and GMIN Stepping . 296
9.2.3 Pseudo Transient Analysis . 296
9.2.4 Junction Initialised Iteration . 298
9.2.5 Using Nodesets . 299

9.3 Transient Analysis . 299
9.3.1 What Causes Non-convergence? . 299
9.3.2 Numerical Noise and Iteration Modes . 299
9.3.3 Fix and Improving Transient Convergence . 301

9.4 DC Sweep . 302
9.5 DC Operating Point . 302

xii
SIMetrix Simulator Reference Manual

Contents

9.5.1 Junction Initialised Iteration . 303
9.5.2 Source Stepping . 303
9.5.3 Diagonal GMIN Stepping . 303
9.5.4 Junction GMIN Stepping . 304
9.5.5 Pseudo Transient Analysis . 304
9.5.6 Controlling DC Method Sequence . 304

9.6 Singular Matrix Errors . 305
9.7 Time step too small . 305
9.8 Accuracy, Integration . 305

9.8.1 A Simple Approach . 305
9.8.2 Iteration Accuracy . 306
9.8.3 Time Step Control . 306
9.8.4 Accuracy of AC analyses . 308
9.8.5 Summary of Tolerance Options . 308
9.8.6 Integration Methods - METHOD option . 309

9.9 Multi-Core Systems . 311
9.9.1 Single Step Runs . 311
9.9.2 Using Multiple Cores for Single Step Runs . 311
9.9.3 Multi-core Multi-step Simulation . 311

9.10 Matrix Solver . 311

10 Digital Simulation 313
10.1 Overview . 313
10.2 Logic States . 313

10.2.1 State resolution table . 314
10.3 Analog to Digital Interfaces . 314

10.3.1 How A-D Bridges are Selected . 316
10.4 Logic Families . 316

10.4.1 Logic Family Model Parameters. 316
10.4.2 Logic Compatibility Tables . 317
10.4.3 Logic Compatibility File Format . 317
10.4.4 Supported Logic Families . 319
10.4.5 Universal Logic Family . 319
10.4.6 Internal Tables . 319

10.5 Load Delay . 319
10.5.1 Overview . 319
10.5.2 Output Resistance . 320
10.5.3 Input Delay . 320
10.5.4 Wire Delay . 320

10.6 Digital Model Libraries . 320
10.6.1 Using Third Party Libraries . 320

10.7 Arbitrary Logic Block - User Defined Models . 321
10.7.1 Overview . 321
10.7.2 An Example . 321
10.7.3 Example 2 - A Simple Multiplier . 323
10.7.4 Example 3 - A ROM Lookup Table . 323
10.7.5 Example 4 - D Type Flip Flop . 324
10.7.6 Device Definition - Netlist Entry and .MODEL Parameters 324
10.7.7 Language Definition - Overview . 326
10.7.8 Language Definition - Constants and Names . 326
10.7.9 Language Definition - Ports . 326
10.7.10 Language Definition - Registers and Variables . 327
10.7.11 Language Definition - Assignments . 330
10.7.12 Language Definition - User and Device Values 332
10.7.13 Diagnostics: Trace File . 333

10.8 Mixed-mode Simulator - How it Works . 333

xiii
SIMetrix Simulator Reference Manual

Contents

10.8.1 Event Driven Digital Simulator . 333
10.8.2 Interfacing to the Analog Simulator . 334

10.9 Enhancements over XSPICE . 335

xiv
SIMetrix Simulator Reference Manual

Chapter 1

Introduction

1.1 Overview

This manual provides full reference documentation for the SIMetrix simulator. Essentially the simulator
receives a netlist as its input and creates a binary data file and list file as its output. The netlist defines the
circuit topology and also specifies the analyses to be performed by the simulator. The netlist may directly
include any device models required or these may be automatically imported from a device model library.

The simulator may be operated in GUI mode or non-GUI mode. GUI mode is the normal method of
operation and requires the SIMetrix front end. In non-GUI mode the simulator runs stand alone in a
non-interactive fashion and may be set to run at low priority in the background.

1.2 The SIMetrix Simulator - What is it?

The SIMetrix simulator core comprises a direct matrix analog simulator closely coupled with an event
driven gate-level digital simulator. This combination is often described as mixed-mode or mixed-signal and
has the ability to efficiently simulate both analog and digital circuits together.

The core algorithms employed by the SIMetrix analog simulator are based on the SPICE program
developed by the CAD/IC group at the department of Electrical Engineering and Computer Sciences,
University of California at Berkeley. The digital event driven simulator is derived from XSPICE developed
by the Computer Science and Information Technology Laboratory, Georgia Tech. Research Institute,
Georgia Institute of Technology.

1.3 What is in This Manual

This reference manual contains detailed descriptions of all simulator analysis modes and supported
devices.

1
SIMetrix Simulator Reference Manual

Chapter 2

Running the Simulator

2.1 Using the Simulator with the Schematic Editor

Full documentation on using the SIMetrix schematic editor for simulation is described in the SIMetrix
User’s manual. However, just a few features of the schematic editor are of particular importance for
running the simulator and for convenience their description is repeated here.

2.1.1 Adding Extra Netlist Lines

The analysis mode selected using the schematic editor’s Simulator | Choose Analysis... menu is stored
in text form in the schematic’s simulator command window. If you wish, it is possible to edit this directly.
Sometimes this is quicker and easier than using the GUI especially for users who are familiar with the
command syntax.

Note that the text entered in the simulator command window and the Choose Analysis dialog settings
remain synchronised so you can freely switch between the two methods.

To open the simulator command window, select the schematic then press the F11 key. It has a toggle
action, pressing it again will hide it. If you have already selected an analysis mode using the Choose
Analysis dialog, you will see the simulator statements already present.

The window has a popup menu selected with the right key. The top item Edit file at cursor will open a
text editor with the file name pointed to by the cursor or selected text item if there is one.

The simulator command window can be resized using the splitter bar between it and the schematic
drawing area.

You can add anything you like to this window not just simulator commands. The contents are simply
appended to the netlist before being presented to the simulator. So, you can place .PARAM statements,
device models, inductor coupling specifications, .OPTIONS statements or simply comments. The Choose
Analysis dialog will parse and possibly modify analysis statements and some .OPTIONS settings but will
leave everything else intact.

2.1.2 Displaying Net and Pin Names

It is sometimes necessary to know the name used for a particular net on the schematic to be referenced in a
simulator statement (such as .NOISE) or for an arbitrary source input. There are two approaches:

• Find out the default name generated by the schematic editor’s netlist generator. To do this, move the
mouse cursor over the net of interest then observe the netname in the status bar in the form
“NET=???”.

2
SIMetrix Simulator Reference Manual

2.1. Simulator and Schematic Editor

• Force a net name of your choice. For this, use a terminal or small terminal symbol. These can be
found under the Place | Connectors menu. After placing on the schematic, select it then press F7 to
edit its name. This name will be used to name the net to which it is connected.

2.1.3 Editing Device Parameters

To use any of the additional parameters in a schematic, use the Parameters button in the dialog box opened
by F7 or the equivalent menu. For example you see this box when editing a resistor:

Pressing the Parameters button will open another dialog from which you can edit parameter values:

You can also bring up this box directly using the right click menu Edit Additional Parameters....

2.1.4 Editing Literal Values - Using shift-F7

The above method is not infallible as it requires the schematic editor to know about the device being
edited. In some circumstances, this will require special properties to be present on the symbol and these

3
SIMetrix Simulator Reference Manual

2.2. Running in non-GUI Mode

may have not been defined (for example something to tell the schematic what level a MOSFET is).

Another situation where the usual device editing methods may be unsuitable is when you need to define a
parameter as an expression.

In these situations you can use shift-F7. This will edit the device’s literal value including any model names
exactly as it will be placed in the netlist. shift-F7 bypasses all smart algorithms and presents you with the
raw values and you must also supply raw values. For example, here is what you might enter for a
MOSFET referencing a model called N1

N1 L={LL-2*EDGE} W={WW-2*EDGE}

Note the model name must be included.

2.2 Running in non-GUI Mode

2.2.1 Overview

The simulator can be run in a non-interactive non-GUI mode independently of the front end. This is useful
for running simulation ‘batches’ controlled by a proprietary script or language or DOS batch files.

Under Windows, the simulator will run as a ‘console mode’ application and no GUI elements will be
created.

When run in this mode, the simulator will read in the specified netlist, run the simulation then close and
return control to the calling program. It will generate a binary data file and a list file.

2.2.2 Important Licensing Information

Non-GUI mode is only possible if you are using network licensing. This feature is not available if you are
using a portable (i.e. dongled) license. Please contact support if you have a non-network license and wish
to use non-GUI simulation mode.

This mode of operation is ‘counted’ for licensing purposes. This means you can only run one non-GUI
simulation process for each license issued even if all are run by a single user on a single machine. By
contrast, regular simulation initiated manually through the GUI are not counted and any number of runs
may be initiated on the same machine by the same user for this purpose.

These restrictions have been made to limit exploitation of multiple core machines for simulations run from
non-SIMetrix environments.

2.2.3 Syntax

The command syntax is as follows:

SIM [/config "config_location"] [/gui mode] [/check] [/an "analysis_line"]
[/list list_filename] [/options "options"] [/nolist] [/lowPriority]
[/nodata] [/k] [/extraline extra_line] netlist_file [data_file]

4
SIMetrix Simulator Reference Manual

2.2. Running in non-GUI Mode

config_location Location of file holding configuration settings. Configuration settings
include global options and global model library locations. The value must
be of the form:

PATH;pathname

pathname may use system symbolic path values such as %EXEPATH%.
See User’s Manual/Sundry Topics/Symbolic Path Names for
details.

If not specified, the configuration settings will be taken from the
Base.sxprj file. See the User’s Manual/Sundry Topics/Configuration
Settings/Default Configuration Location for details on where this file is
located.

Alternatively, you can specify the location using a setting in the startup.ini
file. Add a value called SimConfig to the [Startup] section and give it a
value of:

PATH;pathname

The startup.ini file must be located in the same directory as the SIMetrix
executable binary. (SIMetrix.exe on Windows). See User’s
Manual/Sundry Topics/SIMetrix Command Line Parameters/Using
startup.ini for more information on the startup.ini file.

Note that the /config switch if present must always appear before the first
argument to the command.

mode Mode of operation. Default = -1. Valid values are -1, 0, 1 and 2 but only -1
and 1 are meaningful for stand-alone operation. 0 and 2 are used when
starting the simulator process from the front end. -1 (same as omitting
/gui) runs the simulator in console mode with all messages output to the
console or terminal window. 1 enables GUI mode where the simulator
runs in a stand-alone mode but displays a graphical status box showing
messages and simulator progress. This mode is used by the
‘asynchronous’ menus in the front end.

analysis_line If /an switch is specified, analysis_line specifies the analysis to be
performed and overrides all analysis lines specified in the netlist.

list_filename Name of list file. Default is main netlist file name with extension .OUT.
Enclose path name in quotes if it contains spaces.

options List of options valid for .OPTIONS statement.

netlist_file File name of netlist.

data_file File to receive binary data output.

/check If specified, the netlist will be read in and parsed but no simulation will be
run. Used to check syntax

/nolist If specified, no list file will be created

/lowPriority If specified, the simulator will be run as a low priority process, i.e. in the
background. Recommended for long runs.

/nodata Only vectors explicitly specified using .KEEP or .PRINT will be output to
the binary file. Equivalent to ‘.KEEP /nov /noi /nodig’ in the
netlist.

5
SIMetrix Simulator Reference Manual

2.3. Configuration Settings

/k If specified, the program will not finally terminate until the user has
pressed enter and a message to that effect will be displayed. Under
Windows, if the program is not called from the DOS prompt but from
another program, a console will be created for receiving messages. The
console will close when the program exits sometimes before the user has
had a chance to read the messages. This switch delays the exit of the
program and hence the destruction of the console.

extra_line An additional line that will be appended to the netlist. This permits simple
customisation of the netlist. This should be enclosed in double quotation
marks if the line has spaces.

2.2.4 Aborting

Press cntrl-C - you will be asked to confirm. The simulation will be paused while waiting for your
response and will continue if you enter ‘No’. This is an effective means of pausing the run if you need
CPU cycles for another task, or you wish to copy the data file. See Reading Data.

2.2.5 Reading Data

A data file will be created for the simulation results as normal (see The Binary Data File). You can read
this file after the simulation is complete use the SIMetrix menu File | Data | Load... . You may also read
this data file while the simulation is running but you must pause the simulation first using cntrl-C.

Important: if you read the data file before the simulation is complete or aborted, the file entries that
provide the size of each vector will not have been filled. This means that the waveform viewer will have to
scan the whole file in order to establish the size of the vectors. This could take a considerable time if the
data file is large.

2.3 Configuration Settings

Configuration settings consist of a number of persistent global options as well as the locations for installed
model libraries.

When the simulator is run in GUI mode, its configuration settings are controlled by the front end and
stored wherever the front end’s settings are stored. See the User’s Manual for more details.

The settings when run in non-GUI mode are stored in a configuration file which in fact defaults to the
same location as the default location for the front end’s settings. You can change this location using the
/config switch detailed in Running in non-GUI Mode.

The format of the configuration file is:

[Options]
option_settings

[Models]
model_libraries

Where:

option_settings These are of the form name=value and specify a number of global settings.
Boolean values are of the form name= without a value. If the entry is
present it is TRUE if absent it is FALSE. Available global settings are
detailed below.

6
SIMetrix Simulator Reference Manual

2.3. Configuration Settings

model_libraries A list of entries specifying search locations for model libraries. These are
of the form name=value where name is a string and value is a search
location. The string used for name is arbitrary but must be unique. Entries
are sorted alphabetically according to the name and used to determine the
search order. value is a path name and may contain wildcards (i.e. ‘*’ and
‘?’).

2.3.1 Global Settings

Name Type Default Description

NoStopOnUnknownParam String WARN Specifies action to be taken in the
event of an unknown parameter
being encountered in a .MODEL
statement. Choices are:

TRUE: No action taken, simulation
continues normally FALSE: An
error will be raised and the
simulation will abort WARN: A
warning will be displayed but the
simulation will continue

This will be overridden by a
.OPTIONS setting of the same
name. See the List of Simulator
Options.

MaxVectorBufferSize Numeric 32760 See Data Buffering.

TotalVectorBufferSize Numeric Available RAM/10 See Data Buffering.

TempDataDir String %STARTDIR% Location of temporary binary data
file if data_file is not specified on
command line

LibraryDiagnostics String Full Controls output of messages
relating to model library search.
Specify None to disable

2.3.2 Data Buffering

The simulator buffers data before writing it to disk. By doing so the binary data file can be organised more
efficiently allowing data to be recovered from it quickly.

By default, the simulator won’t allocate more than 10% of your system RAM to vector buffers. Clearly if
you are running a large circuit and saving many vectors, the buffer sizes could reduce to levels that would
make data retrieval very slow. In this case you may wish to consider increasing the memory that is allowed
for these buffers. Two configuration settings control the vector buffering. These are:

• MaxVectorBufferSize. This sets the maximum size that will be used for any individual vector. The
default is 32768 bytes. If you have a high performance SCSI disk system, you may benefit from
increasing this value

• TotalVectorBufferSize. This sets the maximum amount of memory in bytes used for all buffers. It
defaults to a value equal to 10% of your system RAM. This is usually sufficient for most

7
SIMetrix Simulator Reference Manual

2.4. Netlist Format

applications but if you are simulating a very large circuit and have sufficient RAM you may like to
increase this value

The disk will not be written to until the buffers are full. With an all analog circuit all the buffers reach their
full state at the same time so they all get written to disk at the same time. If you have 2G of RAM and are
simulating a large circuit, approximately 200M of data will be written to the disk at regular intervals. This
will result in a pause in the simulation coupled with a great deal of disk activity.

Note that both MaxVectorBufferSize and TotalVectorBufferSize may be set from the front end using the
Set command. See User’s Manual/Sundry Topics/Using the Set and Unset Commands for details.

2.4 Netlist Format

The SIMetrix netlist format follows the general format used for all SPICE and SPICE compatible
simulators. However, with so many SPICE derivatives and with two significantly different versions of
SPICE itself (SPICE 2 and SPICE 3) it is not possible to define a standard SPICE format. SIMetrix has
been developed to be as compatible as possible with model libraries that can be obtained from external
sources. For discrete devices, models are usually SPICE 2 compatible but some use extensions originally
developed for PSpice®. IC designers usually receive model files from fabrication companies and these are
available for a variety of simulators usually including Hspice®. SIMetrix is compatible with all of these
but simultaneous compatibility with all formats is not technically possible due to a small number of syntax
details - such as the character used for in line comments. To overcome these minor difficulties, a language
declaration can be placed at the top of the netlist and any file included using .INC or the Hspice® variant
of .LIB. This is described in the following sections.

2.4.1 File Format

A complete netlist consists of:

• A title line

• Optional language declaration

• Device lines

• Statement lines

• Comment lines

The title line must be the first line of the file and may be empty. The remaining lines - with some
exceptions - may be placed in any order

All other lines are defined by their first non-whitespace character as follows.

• Statement lines begin with a period: ‘.’

• Comment lines begin with an asterix: ‘*’

• Device lines begin with a letter

A line is usually terminated with a new line character but may be continued using the ‘+’ continuation
character. So if the first non-whitespace character is a ‘+’ the line will be considered to be an extension of
the previous line. SPICE requires the ‘+’ to be the first character, SIMetrix allows whitespace (space or
tab) to precede it.

2.4.2 Encoding and International Characters

Netlists may be encoded as ANSI or UTF-8. Currently wide-character encoding is not supported. If ANSI
encoded, the character set employed will be the default for the locale.

8
SIMetrix Simulator Reference Manual

2.4. Netlist Format

Characters from all character sets may be used in netlists for naming items that do not specifically require
western characters. For example, node names may use Japanese characters as long as they do not contain
any spaces.

2.4.3 Language Declaration

SIMetrix is able to read PSpice®, Hspice® and native SIMetrix netlists, but in some cases needs to be
instructed what format netlist it is reading. Currently there are three areas where simultaneous
compatibility has not been possible. These are:

• Inline comment character.

• Unlabelled device parameters

• The meaning of LOG() and PWR() functions

SIMetrix can be instructed to use any of the three languages by using the language declaration. This is one
of:

*#SIMETRIX *#HSPICE *#PSPICE

The language declaration must be placed at the top of the file immediately below the title line. It can also
be placed in files referenced using .INC or the HSPICE® version of .LIB in which case it will apply only to
that file and any others that it calls. A language declaration placed anywhere else in a file will be ignored.

For details see Language Differences.

The *#SIMETRIX language declaration can also be supplied with a parameter to specify the separator
letter used for devices. See Device Lines section for details.

2.4.4 Comments

Any line other than a language declaration beginning with a ‘*’ is defined as a comment and will be
ignored. Also anything between a semi-colon ‘;’ (‘$’ in HSPICE mode) and the end of the line will be
treated as comment and will also be ignored. Some SPICE simulators require the ‘*’ character to be the
first character of the line. SIMetrix allows it to be preceded by white space (spaces and tabs).

2.4.5 Device Lines

Device lines usually follow the following basic form but each type of device tends to have its own nuances:

Name nodelist value [parameters]

value may be an actual number e.g. in the case of passive components such as resistors, or it may be a
model name in the case of semiconductor devices such as bipolar transistors. Models are defined using a
.MODEL statement line.

nodelist is a list of netnames. The number and order of these is device dependent. The netname itself may
consist of any collection of non-control ASCII characters except whitespace and ‘.’. All other ASCII
characters are accepted although it is suggested that the following characters are avoided if possible:

\ " \% \& + - * / ^ < > [] ' @ { }

If any of these characters are used in a netname, a special syntax will be needed to plot any signal voltage
on that net. This is explained in Output Data Names. In addition the characters ‘[’, ‘]’, ‘%’, ‘!’ and ‘ ’ have
a special meaning when used with XSPICE devices and therefore should be avoided at all times.

The name is the circuit reference of the device. The first letter of this name determines the type of device
as shown in the table below.

9
SIMetrix Simulator Reference Manual

2.4. Netlist Format

The Pin Names column in the following table is relevant to the vector name used for values of device pin
current. See Output Data Names.

Letter Number
pins

Device Pin Names

A Any XSPICE devices depends on device

B 2 Arbitrary source P, N

C 2 Capacitor P, N

D 2 Diode P, N

E 4 Voltage controlled voltage source P, N, CP, CN

F 2 Current controlled current source P, N

G 4 Voltage controlled current source P, N, CP, CN

H 2 Current controlled voltage source P, N

I 2 Fixed current source P, N

J 3 JFET D, G, S

K 0 Coupling for inductors

L 2 Inductor P, N

M 4 MOSFET D, G, S, B

N - Not used

O 4 Lossy transmission line P1, N1, P2, N2

P - Not used

Q 3-5 Bipolar transistor C, B, E, S, DT

R 2 Resistor P, N

S 4 Voltage controlled switch P, N, CP, CN

T 4 Lossless transmission line P1, N1, P2, N2

U Any VSXA devices (Verilog-HDL interface),
Verilog-A devices, AC Table device

V 2 Voltage source P, N

W - Not used

X Any Subcircuit

Y - Not used

IGBT C, G, E

To remove the naming restriction that this system imposes, SIMetrix supports an extension to the above to
allow the user to use any name for all devices. If the device letter is followed by a dollar ‘$’ symbol (by
default but can be changed - see below), the remainder of the name following the ‘$’ will be used as the
device name. E.g.:

Q$TR23

will define a bipolar transistor with the name TR23. All output generated by the simulator will refer to
TR23 not Q$TR23.

The above mechanism can be disabled and also the character can be changed by adding a parameter to the
language declaration (see Language Declaration). To disable, add this to the top of the netlist:

*#SIMETRIX sep=none

10
SIMetrix Simulator Reference Manual

2.5. Simulator Output

To change the character use:

*#SIMETRIX sep=character

character must be a single letter, anything else will be ignored. Although any character will be accepted it
should clearly not be alpha-numeric.

The above mechanism will also be disabled if HSPICE or PSPICE languages are specified.

2.4.6 Simulator Statements

Instructions to the simulator other than device definitions and comments are referred to as statements and
always begin with a period ‘.’.

Full documentation for SIMetrix statements see Command Reference.

2.5 Simulator Output

2.5.1 The List File

SIMetrix produces a list file by default. This receives all text output except for the Monte Carlo log. This
includes operating point results, model parameters, noise analysis results, sensitivity analysis results,
pole-zero analysis results and tabulated vectors specified by .PRINT.

The list file is generated in the same directory as the netlist. It has the same name as the netlist but with the
extension .OUT.

There are a number of options that control the list file output.

Option
name

Description

PARAMLOG Valid values:
Full All instance and model parameter values reported

Given All user specified model parameters and parameterised instance
parameters

Brief Parameterised model and instance parameters

None None

Default = Given

EXPAND Flag. If specified, the netlist with all sub-circuits expanded will be output
to the list file

EXPANDFILE String. If specified the expand netlist will be output to the specified file
rather than the list file

NOMOD Same as PARAMLOG=none. Model parameters will not be output

WIDTH Page width in number of characters. (The list file is formatted assuming
that it will be read or printed using a fixed width font such as Courier.)
The default is 80 but any value may be used not just 80 and 132 as in
SPICE 2.

OPINFO If set DC operating point info file is created for all analyses (except
.SENS). Normally it is created only for .OP analyses

11
SIMetrix Simulator Reference Manual

2.5. Simulator Output

2.5.2 The Binary Data File

The simulation data is stored in a binary data file. The format is proprietary to SIMetrix and is not
compatible with SPICE ‘raw’ files.

The name and location of the binary file depends on configuration settings and in what mode the simulator
is run. Usually, the file is located in the directory specified by the TEMPDATADIR configuration setting
(see Configuration Settings) and is named according to the analysis type and appended with the extension
.sxdat. E.g.tran1.sxdat, ac2.sxdat, dc3.sxdat etc. The name and location can be overridden at the program
command line if operated in non-GUI mode or at the front end Run command line if run in GUI mode.

Only the SIMetrix front end can read the simulator’s binary data file. When run in GUI mode, the file is
automatically loaded and in fact it is not usually necessary to know anything about it except perhaps when
it grows very large and fills up your disk. If the simulator is run in non-GUI mode, it becomes necessary to
explicitly load the data into the front end when the run is complete. This can be done with the command
shell menu File | Data | Load.... After the data is loaded, the results can be plotted in the usual manner.
See User’s Manual/Graphs,Probes and Data Analysis/Saving Data/Restoring Simulation Data for further
details.

2.5.3 Output Data Names

For transient, DC and AC analyses, SIMetrix calculates and stores the circuit’s node voltages and device
pin currents and these are all given unique names. If using probing techniques with the front end’s
schematic editor you don’t usually need to know anything about the names used. However there are
situations where it is necessary or helpful to know how these names are derived. An example is when
compiling an expression relating voltages and currents to be used in a .PRINT statement. Another is when
plotting results created by simulating a netlist that was not generated using the schematic editor. The
names used are documented in the following notes.

Top Level Node Voltages

The vector names used for node voltages at the top level (i.e. not in a subcircuit) are simply the name of
the node used in the netlist. If using the schematic editor the name of any node can be fixed using a
Terminal symbol. See menu Place | Connectors | Terminal.

Subcircuit Node Voltages

For nodes within a subcircuit, the name is prefixed with the subcircuit reference and a ‘.’. For example:

X1 N1 N2 N3 SubName
X2 N4 N5 N6 SubName

.SUBCKT 1 2 3 SubName
X3 N1 2 N3 SubName2
R1 VIN 0 1k
...
.ENDS

.SUBCKT 1 2 3 SubName2
V1 VCC 0 5
...
.ENDS

The internal node VIN in definition SubName referenced by X1 would be called X1.VIN. The same node
referenced by X2 would be called X2.VIN. The node VCC defined in subcircuit SubName2 would be
named X1.X3.VCC and X2.X3.VCC for X1 and X2 respectively.

12
SIMetrix Simulator Reference Manual

2.5. Simulator Output

Nodes with Non-standard Names

A non-standard node name is one that begins with a digit or which contains one or more of the characters:

\ " \% \& + - * / ^ < > [] ' @ { }

These are legal but introduce problems when accessing the voltage data that they carry. The above
characters can be used in arithmetic expressions so cause a conflict if used as a node name. In order to
access the voltage data on a node so named, use the Vec() function:

Vec(’node_name’)

Example with .PRINT and node called V+

.PRINT TRAN {Vec('V+')}

A similar syntax is required when using the front end plotting commands.

Device Pin Currents

Device pin currents are named in the following form:

device_name#pin_name

For primitive devices (i.e. not sub-circuits) pin_name must comply with the table in Device Lines. For
example the current into the collector of Q23 would be Q23#c.

The pin names for sub-circuits depend on whether the pinnames: specifier (see Subcircuit Instance) is
included in the netlist entry for the device. If it is the pin current name will be the name listed after
pinnames:. If it isn’t then they are numbered in sequence starting from 1. The order is the same as the
order they appear in the netlist device line. For example, if the subcircuit line is:

X$U10 N1 N2 N3 N4 N5 LM324 pinnames: VINP VINN VP VN VOUT

The current into the last pin (connected to N5) would be U10#VOUT

(Note that ‘X$’ is stripped off as explained above in Device Lines).

If the netlist line is:

X$U10 N1 N2 N3 N4 N5 LM324

The same current would be U10#5

Internal Device Values

Some devices have internal nodes or sources and the voltages or currents associated with these may be
output by the simulator. These are named in a similar manner to pin currents i.e.

device_name#internal_name

The internal_name depends on the device. For example, bipolar transistors create an internal node for each
terminal that specifies a corresponding resistance parameter. So if the RE parameter is specified an internal
node will be created called emitter.

Note that internal device values are only output if explicitly enabled using the “.KEEP /INTERNAL”
statement. See .KEEP.

13
SIMetrix Simulator Reference Manual

2.6. Controlling Data Saved

2.6 Data Handling - Controlling Data Saved

As explained in The Binary Data File, all data is saved to a binary disk file. By default, all signals visible
in a schematic are saved. That is all signals at the top level of a hierarchy and in all child schematics are
saved. Signals inside subcircuits that were not generated by a hierarchical schematic are not saved.

SIMetrix has comprehensive features for changing exactly what data is saved. Some simulations can
generate huge amounts of data and with multi-core multi-step simulations, the rate at which the data is
created can exceed the performance of the disk system. It is therefore desirable in some cases to reduce the
amount of data saved.

For simulations run from the user interface, some of the data handling features are available through the
GUI. See User’s Manual/Analysis Modes/Data Handling and Keeps.

More comprehensive features are available using .KEEP and .OPTIONS. See .KEEP for full details.

14
SIMetrix Simulator Reference Manual

Chapter 3

Simulator Devices

3.1 Overview

This chapter is an introduction to the Analog Deivce reference and the Digital/Mixed Signal Device
Reference.

The device reference chapters describe all simulator devices at the netlist level. The netlist consists of a list
of component definitions, along with simulator commands, which the simulator can understand. Simple
components, such as resistors just need a value to define them. Other more complicated devices such as
transistors need a number of parameters to describe their characteristics.

The device references includes details of all device and model parameters. Using the schematic editor and
model library you may not often need to read this section. Some of the devices, however, have advanced
options not directly supported by the user interface. For example, many devices allow a local temperature
to be specified. This requires the component value to be appended with TEMP=.... This device parameter
and others are documented here.

Note that many parts either supplied with SIMetrix or available from component manufacturers are
implemented as subcircuits. These are circuit designs to simulate the behaviour of high level devices such
as opamps. SIMetrix (and all other SPICE simulators) do not have an opamp device built in but use these
macro models instead. Full documentation for these devices is beyond the scope of this manual but can
sometimes be obtained from their suppliers.

3.2 Using XSPICE Devices

Some devices are implemented as part of the XSPICE ‘code modelling’ framework. This framework
introduces some new features at the netlist level not supported by standard SPICE devices. These new
features are described in this section.

All but one of these devices that use this framework are digital or mixed signal devices and the reference
for these can be found at Digital/Mixed Signal Device Reference.

The exception is the S-domain Transfer Function Block which is a pure analog part.

3.2.1 Vector Connections

Some models feature an arbitrary number of inputs or/and outputs. For example, an AND gate can have
any number of inputs. It would be inflexible to have a separate model for every configuration of AND gate
so a method of grouping connections together has been devised. These are known as vector connections.
Vector connections are enclosed in square brackets. E.g. the netlist entry for an AND gate is:

15
SIMetrix Simulator Reference Manual

3.2. Using XSPICE Devices

Axxxx [in_0 in_1 .. in_n] out model_name

The pins in_0 in_1 to in_n form a single vector connection. Any number of pins may be placed inside the
square brackets, in fact the same model may be used for devices with different numbers of inputs.

Some devices have a minimum and/or maximum number of pins that may be used in a vector connection.
This is known as vector bounds and if they apply will be listed in the vector bounds column of the
Connection Details table provided with every device definition.

3.2.2 Connection Types

In the device references that follow, each has a table titled Connection Details. Each table has a “Type”
column and some have an “Allowed types” column. The type referred to here is the type of electrical
connection e.g. voltage, current, differential or single-ended. Some devices allow some or all of their
connections to be specified with a range of types. For example, the analog-digital converter has a single
ended voltage input by default. However, using a simple modification to the netlist entry, an ADC can be
specified with a differential voltage input or even a differential current. Changing the type of connection
involves no changes to the .MODEL statement, only to the netlist entry.

The following table lists all the available types. The modifier is the text used to alter a connection type at
the netlist level. This is explained below

Description Modifier

Single ended voltage %v

Single ended current %i

Differential voltage %vd

Differential current %id

Digital %d

Grounded conductance (voltage input current output) %g

Grounded resistance (current input, voltage output) %h

Differential conductance (voltage input current output) %gd

Differential resistance (voltage input current output) %hd

With the models supplied with SIMetrix, only the first four in the above table are ever offered as options.
The others are used but are always compulsory, and an understanding of their meaning is not necessary to
make full use the system.

As well as type, all connections also have a flow referring to the direction of the signal flow. This can be in,
out or inout. Voltage, current and digital connections may be in or out while the conductance and
resistance connections may only be inout. Voltage inputs are always open circuit, current inputs are always
short circuit, voltage outputs always have zero output impedance and current outputs always have infinite
output impedance.

The conductance connections are a combined voltage input and current output connected in parallel. If the
output is made to be proportional to the input, the connection would be a conductor with a constant of
proportionality equal to its conductance, hence the name.

Similarly, the resistance connections are a combined current input and voltage output connected in series.
If the output is made to be proportional to the input, the connection would be a resistor with a constant of
proportionality equal to its resistance.

16
SIMetrix Simulator Reference Manual

3.3. Using Expressions

Changing Connection Type

If a model allows one or more of its connections to be given a different type, this can be done by preceding
the connection entry with the appropriate modifier listed in the table above. For example if you wish to
specify a 4 bit ADC with a differential voltage input, the netlist entry would be something like:

A1 %vd ANALOG_INP ANALOG_INN CLOCK_IN [DATA_OUT_0 DATA_OUT_1 DATA_OUT_2
DATA_OUT_3] DATA_VALID ADC_4

3.3 Using Expressions

3.3.1 Overview

Expressions consist of arithmetic operators, functions, variables and constants and may be employed in the
following locations:

• As device parameters

• As model parameters

• To define a variable (see .PARAM) which can itself be used in an expression.

• As the governing expression used for arbitrary sources.

They have a wide range of uses. For example:

• To define a number of device or model parameters that depend on some common characteristic. This
could be a circuit specification such as the cut-off frequency of a filter or maybe a physical
characteristic to define a device model.

• To define tolerances used in Monte Carlo analyses.

• Used with an arbitrary source, to define a non-linear device.

3.3.2 Using Expressions for Device Parameters

Device or instance parameters are placed on the device line. For example the length parameter of a
MOSFET, L, is a device parameter. A MOSFET line with constant parameters might be:

M1 1 2 3 4 MOS1 L=1u W=2u

L and W could be replaced by expressions. For example:

M1 1 2 3 4 MOS1 L={LL-2*EDGE} W={WW-2*EDGE}

Device parameter expressions must usually be enclosed with either single quotation marks (’) double
quotation marks (") or braces (‘’ and ‘’). The expression need not be so enclosed if it consists of a single
variable. For example:

.PARAM LL=2u WW=1u
M1 1 2 3 4 MOS1 L=LL W=WW

3.3.3 Using Expressions for Model Parameters

The rules for using expressions for device parameters also apply to model parameters. E.g.

.MODEL N1 NPN IS=is BF={beta*1.3}

17
SIMetrix Simulator Reference Manual

3.3. Using Expressions

3.3.4 Expression Syntax

Expressions generally comprise the following elements:

• Circuit variables

• Parameters

• Constants.

• Operators

• Functions

• Look up tables

These are described in the following sections.

Circuit Variables

Circuit variables may only be used in expressions used to define arbitrary sources and to define variables
that themselves are accessed only in arbitrary source expressions.

Circuit variables allow an expression to reference voltages and currents in any part of the circuit being
simulated.

Voltages are of the form:

V(node_name1)

OR

V(node_name1, node_name2)

Where node_name1 and node_name2 are the name of the node carrying the voltage of interest. The
second form above returns the difference between the voltages on node_name1 and node_name2. If using
the schematic editor nodenames are normally allocated by the netlist generator. For information on how to
display and edit the schematic’s node names, refer to Displaying Net and Pin Names.

Currents are of the form:

I(source_name)

Where source_name is the name of a device carrying the current of interest. The controlling device can be
any native (i.e. non-subcircuit) device in the circuit. The current used will be the current flowing into its
first terminal. The first terminal is the one that is first in the device’s netlist entry. Note that if the device is
not a voltage source or implemented as a voltage source, the current is sensed by placing a zero-volt
voltage source in series with the sensing device. This is done automatically and no user action is required.

It is legal for an expression used in an arbitrary source to reference itself e.g.:

B1 n1 n2 V=100*I(B1)

Implements a 100 ohm resistor.

A second argument can be provided:

I(source_name, terminal)

where (terminal) is the name of the terminal of the device. For example:

I(Q3,c)

18
SIMetrix Simulator Reference Manual

3.3. Using Expressions

will return the collector current of Q3. There is currently no documentation that lists terminal names for
each simulator device type but the names can be obtained from the GetDevicePins script function. Refer to
Script Reference Manual/Function Reference/GetDevicePins. Most semiconductor device pins are named
with a single letter representing their familiar name: ‘c’, ‘b’, ‘e’, ‘d’, ‘g’, ‘s’, ‘b’ and most two-terminal
parts are ‘p’ and ‘n’.

Parameters

These are defined using the .PARAM statement. For example:

.PARAM res=100
B1 n1 n2 V=res*I(B1)

Also implements a 100 ohm resistor.

Circuit variables may be used .PARAM statements, for example:

.PARAM VMult = { V(a) * V(b) }
B1 1 2 V = Vmult + V(c)

Parameters that use circuit variables may only be used in places where circuit variables themselves are
allowed. So, they can be used in arbitrary sources and they may be used to define the resistance of an
Hspice style resistor which allows voltage and current dependence. (See Resistor - Hspice Compatible).
They may also of course be used to define further parameters as long as they too comply with the above
condition.

Built-in Parameters

A number of parameter names are assigned by the simulator. These are:

Parameter
name

Description

TIME Resolves to time for transient analysis. Resolves to 0 otherwise including
during the pseudo transient operation point algorithm. Note that this may
only be used in an arbitrary source expression

TEMP Resolves to current circuit temperature in Celsius

HERTZ Resolves to frequency during AC sweep and zero in other analysis
modes

PTARAMP Resolves to value of ramp during pseudo transient operating point
algorithm if used in arbitrary source expression. Otherwise this value
resolves to 1

STARTUPRAMP Resolves to transient startup ramp value when a "startup" specification is
provided. During a startup phase this will have a value that rises linearly
from 0.0 at t=0 to 1.0 when t reaches the startup time

ANALYSIS Resolves to an integer value according to the analysis being performed.

1 Operating point

2 Transient

3 AC

5 DC Sweep

6 Noise

7 Transfer function

8 Sensitivity
19

SIMetrix Simulator Reference Manual

3.3. Using Expressions

Constants

Apart from simple numeric values, arbitrary expressions may also contain the following built-in constants:

Constant name Value Description

PI 3.14159265358979323846 π

E 2.71828182845904523536 e

TRUE 1.0

FALSE 0.0

ECHARGE 1.6021918e-19 Charge on an electron in coulombs

BOLTZ 1.3806226e-23 Boltzmann’s constant

If the simulator is run from the front end in GUI mode, it is also possible to access variables defined on the
Command Shell command line or in a script. The variable must be global and enclosed in braces. E.g.

B1 n1 n2 V = V(n3, n3) * { global:amp_gain }

amp_gain could be defined in a script using the LET command. E.g. “Let global:amp_gain = 100”

Operators

These are listed below and are listed in order of precedence. Precedence controls the order of evaluation.
So 3*4 + 5*6 = (3*4) + (5*6) = 42 and 3+4*5+6 = 3 + (4*5) + 6 = 29 as ‘*’ has higher precedence than ‘+’.

Operator Description

! - Digital NOT, Logical NOT, Unary minus

ˆ or ** Raise to power.

*, / Multiply, divide

+, - Plus, minus

>=, <=, > < Comparison operators

==, != or <> Equal, not equal

& Digital AND (see below)

| Digital OR (see below)

&& Logical AND

ˆˆ Exclusive OR

|| Logical OR

test ? true_expr : false_expr Ternary conditional expression (see below)

Comparison, Equality and Logical Operators

These are Boolean in nature either accepting or returning Boolean values or both. A Boolean value is either
TRUE or FALSE. FALSE is defined as equal to zero and TRUE is defined as not equal to zero. So, the
comparison and equality operators return 1.0 if the result of the operation is true otherwise they return 0.0.

20
SIMetrix Simulator Reference Manual

3.3. Using Expressions

The arguments to equality operators should always be expressions that can be guaranteed to have an exact
value e.g. a Boolean expression or the return value from functions such as SGN. The == operator, for
example, will return TRUE only if both arguments are exactly equal. So the following should never be
used:

v(n1)==5.0

v(n1) may not ever be exactly 5.0. It may be 4.9999999999 or 5.00000000001 but only by chance will it
be 5.0.

These operators are intended to be used with the IF() function described in Ternary Conditional
Expression.

Digital Operators

These are now considered obsolete and should not be used in new model designs. They may be
removed from future versions of SIMetrix.

These are the operators ‘&’, ‘|’ and ‘~’. These were introduced in old SIMetrix version as a simple means
of implementing digital gates in the analog domain. Their function has largely been superseded by gates in
the event driven simulator.

Ternary Conditional Expression

This is of the form:

test_expression ? true_expression : false_expression

The value returned will be true_expression if test_expression resolves to a non-zero value, otherwise the
return value will be false_expression. This is functionally the same as the IF() function described in the
functions table below.

Functions

Function Description

ABS(x) |x|
ACOS(x), ARCCOS(x) cos−1(x)

ACOSH(x) cosh−1(x)

ASIN(x), ARCSIN(x) sin−1(x)

ASINH(x) sinh−1(x)

ATAN(x), ARCTAN(x) tan−1(x)

ATAN2(x,y) tan−1(x/y). Valid if y=0

ATANH(x) tanh−1(x)

COS(x) cos(x)

COSH(x) cosh(x)

DDT(x) dx/dt

EXP(x) ex

FLOOR(x), INT(x) Next lowest integer of x.

GE(x,y[,timetol]) x >= y See Relational functions.

21
SIMetrix Simulator Reference Manual

3.3. Using Expressions

Function Description

GT(x,y[,timetol]) x > y See Relational functions.

IF(cond, x, y[, maxslew]) if cond is TRUE result = x else result = y. If maxslew > 0 the
rate of change of the result will be slew rate controlled. See IF()
Function.

IFF(cond, x, y[, maxslew]) As IF(cond, x, y, maxslew)

LE(x,y[,timetol]) x <= y See Relational functions.

LIMIT(x, lo, hi) if x < lo result = lo else if x > hi result = hi else
result = x

LIMITS(x, lo, hi, sharp) As LIMIT but with smoothed corners. The ‘sharp’ parameter defines
the abruptness of the transition. A higher number gives a sharper
response. LIMITS gives better convergence than LIMIT. See
LIMITS() Function. below

LN(x) ln(x) If x < 10−100 result = −230.2585093

LNCOSH(x) ln(cosh(x)) =
∫
tanh(x)dx

LOG(x) log10(x). If x < 10−100 result = −100

LOG10(x) log10(x). If x < 10−100 result = −100

LT(x,y[,timetol]) x < y See Relational functions.

MAX(x, y) Returns larger of x and y

MIN(x,y) Returns smaller of x and y

PWR(x,y) xy

PWRS(x,y) x >= 0: xy , x < 0: −xy

SDT(x)
∫
xdt

SGN(X) x > 0: 1, x < 0: -1, x = 0: 0

SIN(x) sin(x)

SINH(x) sinh(x)

SQRT(x) x >= 0:
√
x, x < 0:

√
−x

STP(x) x <= 0: 0, x > 0: 1

TABLE(x,xy_pairs) lookup table. Refer to Lookup tables

TABLEX(x,xy_pairs) Same as TABLE except end points extrapolated. Refer to Lookup
tables

TAN(x) tan(x)

TANH(x) tanh(x)

U(x) as STP(x)

URAMP(x) x < 0: 0, x >= 0: x

The log() Function

The log() function means log to the base 10 in native SIMetrix expressions. However, in some other
simulators log() means log to the base e. Expressions written in the format of another simulator will
interpret log() in the same way as that simulator. In particular PSpice ABM syntax is recognised by
SIMetrix and, as PSpice interprets log() and log to base e, SIMetrix will do so too when used in a PSpice
ABM expression. For example:

22
SIMetrix Simulator Reference Manual

3.3. Using Expressions

E1 n1 n2 VALUE = {log(1+exp(V(n3,n4)))}

In the above, log is interpreted as log to base e.

To avoid any confusion, we recommend avoid using log(). For log to base 10 use log10() and for log
to base e use ln().

Monte Carlo Distribution Functions

To specify Monte Carlo tolerance for a model parameter, use an expression containing one of the
following functions:

Name Distribution Lot?

DISTRIBUTION2 User defined distribution No

DISTRIBUTION2L User defined distribution Yes

UD2 Alias for DISTRIBUTION2() No

UD2L Alias for DISTRIBUTION2L() Yes

GAUSS Gaussian No

GAUSSL Gaussian Yes

GAUSSTRUNC Truncated Gaussian No

GAUSSTRUNCL Truncated Gaussian Yes

UNIF Uniform No

UNIFL Uniform Yes

UNIF2 Uniform No

UNIFL2 Uniform Yes

WC Worst case No

WCL Worst case Yes

WC2 Worst case No

WCL2 Worst case Yes

GAUSSE Gaussian logarithmic No

GAUSSEL Gaussian logarithmic Yes

UNIFE Uniform logarithmic No

UNIFEL Uniform logarithmic Yes

WCE Worst case logarithmic No

WCEL Worst case logarithmic Yes

A full discussion on the use of Monte Carlo distribution functions is given in Specifying Tolerances.

IF() Function

IF(condition, true-value, false-value[, max-slew])

The result is:

if condition is non-zero, result is true-value, else result is false-value.

If max-slew is present and greater than zero, the result will be slew-rate limited in both positive and
negative directions to the value of max-slew.

23
SIMetrix Simulator Reference Manual

3.3. Using Expressions

In some situations, for example if true-value and false-value are constants, the result of this function will
be discontinuous when condition changes state. This can lead to non-convergence as there is no lower
bound on the time-step. In these cases a max-slew parameter can be included. This will limit the slew rate
so providing a controlled transition from the true-value to the false-value and vice-versa.

If the option setting DISCONTINUOUSIFSLEWRATE is non-zero, SIMetrix will automatically apply a
max-slew parameter to all occurrences of the IF() function if both true-value and false-value are constants.
This provides a convenient way of resolving convergence issues with third-party models that make
extensive use of discontinuous if expressions. Note that the DISCONTINUOUSIFSLEWRATE option is
also applied to conditional expressions using the C-style condition ? true-value : false-value syntax.

LIMITS() Function

LIMITS(x, low, high, sharp)

The LIMITS() function is similar to LIMIT but provides a smooth response at the corners which leads to
better convergence behaviour. The behaviour is shown below

The LIMITS function follows this equation:

LIMITS(x, low, high, sharp) = 0.5*((ln(cosh(v1))-ln(cosh(v2)))/v3 +(low+high))

Where

v1 = sharp/(high-low)*(x-low)

v2 = sharp/(high-low)*(x-high)

v3 = sharp/(high-low)

24
SIMetrix Simulator Reference Manual

3.3. Using Expressions

Look-up Tables

Expressions may contain any number of look-up tables. This allows a transfer function of a device to be
specified according to - say - measured values without having to obtain a mathematical equation. Look-up
tables are specified in terms of x, y value pairs which describe a piece-wise linear transfer function. There
are three ways to create a lookup table:

Method 1 Syntax in form: TABLE[xy_pairs](input_expression).

xy_pairs A sequence of comma separated pairs of constant
values that define the input and output values of the
table. For each pair, the first value is the x or input
value and the second is the y or output value. Only
explicit numeric constants may be used. Even
internal constants such as PI may not be used.

input_expression Expression defining the input or x value of the
table.

Method 2 Syntax in form: TABLE(input_expression, xy_pairs).

input_expression Expression defining the input or x value of the
table.

xy_pairs A sequence of comma separated pairs of values that
define the input and output values of the table. For
each pair, the first value is the x or input value and
the second is the y or output value. Unlike method 1,
values do not need to be literal constants and may be
expressions containing parameters and circuit
variables that reference voltages and currents in the
circuit.

The TABLE function retains the value of the end
point for x values beyond the range of the table. For
example, if the last point for the TABLE function is
(10,5) then any input greater than 10 will give an
output of 5.

If any value references a circuit variable, the
expression in which the TABLE function is used
must ultimately be evaluated in an arbitrary
source

Method 3 Syntax in form: TABLEX(input_expression, xy_pairs).

input_expression Expression defining the input or x value of the
table.

xy_pairs Same as method 2 except that out-of-range points are
extrapolated from the final segment. See Table
Lookup Example

Method 1 is more efficient at handling large tables (hundreds of values). However, method 2 is generally
more flexible and is the recommended choice for most applications. Method 2 is also compatible with
other simulators whereas method 1 is proprietary to SIMetrix.

For an example see Table Lookup Example

25
SIMetrix Simulator Reference Manual

3.3. Using Expressions

Relational Operators and Functions

The operators ’<’, ’<=’, ’>’ and ’>=’ are known as relational operators. The result of executing these is a
value of either 1.0 or 0.0 depending whether the relation is true. These are often used with the if()
function.

The functions, lt(x, y), le(x, y), gt(x, y) and ge(x, y) perform the same task but with an important
difference. These functions control the time step so that a time point is performed both before and after the
threshold is crossed with a timestep between the two points that is no larger than the value specified by
their third argument. If no third argument is provided, a default value is used defined by option setting
RELOPTHRESHTIMETOL which itself defaults to 10ns.

The time step control feature of these functions is useful for use in applications such as comparators. For
example, suppose a comparator is implemented using an expression such as V (inp) > V (inn). This
might be used to trigger activity on the rising edge of an input signal. If the circuit is in an idle state the
time steps could be very long, perhaps in the millisecond region. For this example, let’s suppose that the
timestep is currently 1ms and the V (inp) > V (inn) changes state. This might not be registered until up to
1ms after the threshold is actually crossed. Further the actual delay is random and could therefore
introduce quite serious errors maybe even preventing an edge triggered event occurring. This problem is
often solved by limiting the maximum time step but in some applications this can slow the simulation time
unacceptably.

A better solution is to control the time step so that the threshold is detected accurately. This can be done by
instead calling the function lt(V (inp), V (inn), 1n). Here the time step will be controlled to an accuracy
of 1ns which will solve the problem of slow edges.

The regular operators ’<’, ’<=’, ’>’ and ’>=’ can also be configured to behave in the same way using
another boolean option setting: RELOPTHRESHDETECT. The operators do not have a third argument so
these always use the time tolerance defined by RELOPTHRESHTIMETOL. See .OPTIONS

3.3.5 Examples

Table Lookup Example

The following arbitrary source definition implements a soft limiting function

Using method 1:
B1 n2 n3 V=table[-10, -5, -5, -4, -4, -3.5, -3, -3, 3, 3, 4,
+ 3.5, 5, 4, 10, 5](v(N1))

Using method 2:
B1 n2 n3 V=TABLE(v(N1), -10, -5, -5, -4, -4, -3.5, -3, -3, 3, 3, 4,
+ 3.5, 5, 4, 10, 5)

Using method 3:
B1 n2 n3 V=TABLEX(v(N1), -10, -5, -5, -4, -4, -3.5, -3, -3, 3, 3, 4,
+ 3.5, 5, 4, 10, 5)

The resulting transfer functions are illustrated in the following picture:

26
SIMetrix Simulator Reference Manual

3.3. Using Expressions

Parameter Example

It is possible to assign expressions to component values which are evaluated when the circuit is simulated.
This has a number of uses. For example you might have a filter design for which several component values
affect the roll off frequency. Rather than recalculate and change each component every time you wish to
change the roll of frequency it is possible to enter the formula for the component’s value in terms of this
frequency.

27
SIMetrix Simulator Reference Manual

3.3. Using Expressions

The above circuit is that of a two pole low-pass filter. C1 is fixed and R1=R2. The design equations are:

R1=R2=2/(2*pi*f0*C1*alpha)
C2=C1*alpha*alpha/4

where f0 is the cut off frequency and alpha is the damping factor.

The complete netlist for the above circuit is:

V1 V1_P 0 AC 1 0
C2 0 R1_P {C1*alpha*alpha/4}
C1 VOUT R1_N {C1}
E1 VOUT 0 R1_P 0 1
R1 R1_P R1_N {2/(2*pi*f0*C1*alpha)}
R2 R1_N V1_P {2/(2*pi*f0*C1*alpha)}

Before running the above circuit you must assign values to the variables. This can be done by one of three
methods:

• With the .PARAM statement placed in the netlist.

• With Let command from the command line or from a script. (If using a script you must prefix the
parameter names with global:)

• By sweeping the value with using parameter mode of a swept analysis (see General Sweep
Specification) or multi-step analysis (see Multi Step Analyses).

Expressions for device values must be entered enclosed in curly braces (‘{’ and ‘}’).

Suppose we wish a 1kHz roll off for the above filter.

Using the .PARAM statement, add these lines to the netlist

.PARAM f0 1k

.PARAM alpha 1

.PARAM C1 10n

Using the Let command, you would type:

Let f0=1k
Let alpha=1
Let C1=10n

If you then wanted to alter the damping factor to 0.8 you only need to type in its new value:

Let alpha=0.8

28
SIMetrix Simulator Reference Manual

3.3. Using Expressions

then re-run the simulator.

To execute the Let commands from within a script, prefix the parameter names with global:. E.g. “Let
global:f0=1k”

In many cases the .PARAM approach is more convenient as the values can be stored with the schematic.

3.3.6 Optimisation

Overview

An optimisation algorithm may be enabled for expressions used to define arbitrary sources and any
expression containing a swept parameter. This can improve performance if a large number of such
expressions are present in a design.

The optimiser dramatically improves the simulation performance of the power device models developed
by Infineon. See Optimiser Performance.

Note that the optimiser referred to here is an algorithm that manipulates expressions found in arbitrary
sources to make them evaluate more efficiently. This is not to be confused with the circuit optimiser
described here

Why is it Needed?

The simulator’s core algorithms use the Newton-Raphson iteration method to solve non-linear equations.
This method requires the differential of each equation to be calculated and for arbitrary sources, this
differentiation is performed symbolically. So as well as calculating the user supplied expression, the
simulator must also evaluate the expression’s differential with respect to each dependent variable. These
differential expressions nearly always have some sub-expressions in common with sub-expressions in the
main equation and other differentials. Calculation speed can be improved by arranging to evaluate these
sub-expressions only once. This is the main task performed by the optimiser. However, it also eliminates
factors found on both the numerator and denominator of an expression as well as collecting constants
together wherever possible.

Using the Optimiser

The optimiser is automatically enabled and no action is required to make use of it. If desired, it can be
disabled using:

.OPTIONS optimise=0

Optimiser Performance

The optimisation algorithm was added to SIMetrix primarily initially to improve the performance of some
publicly available power device models from Infineon. These models make extensive use of arbitrary
sources and many expressions are defined using .FUNC. Since its original development, many more device
manufacturers have developed models using the same method and these also benefit from the performance
enhancement.

The performance improvement gained for these model is in some cases dramatic. For example a simple
switching PSU circuit using a SGP02N60 IGBT ran around 5 times faster with the optimiser enabled and
there are other devices that show an even bigger improvement.

29
SIMetrix Simulator Reference Manual

3.4. Subcircuits

Accuracy

The optimiser simply changes the efficiency of evaluation and doesn’t change the calculation being
performed in any way. However, performing a calculation in a different order can alter the least significant
digits in the final result. In some simulations, these tiny changes can result in much larger changes in
circuit solution. So, you may find that switching the optimiser on and off may change the results slightly.

3.4 Subcircuits

3.4.1 Overview

Subcircuits are a method of defining a circuit block which can be referenced any number of times by a
single netlist line or schematic device. Subcircuits are the method used to define many device models such
as op-amps.

3.4.2 Subcircuit Definition

Subcircuits begin with the .SUBCKT statement and end with .ENDS. A subcircuit definition is of the form:

.SUBCKT subcircuit_name nodelist [[params:] default_parameter_list]
definition_lines
.ENDS

subcircuit_name Name of the subcircuit and is used to reference it in the main
netlist.

nodelist Any number of node names and are used for external connections. The
subcircuit call (using an ‘X’ device) would use a matching number of
nodes in the same order.

default_parameter_list List of parameters and their default values in the form name=value.
Subcircuit parameters are explained in Using Expressions.

definition_lines List of valid device and model lines. In addition, .NODESET, .IC and
.KEEP lines may also be placed in a subcircuit.

Example

This is an example of an opamp subcircuit called SXOA1000. VINP, VINN VOUT VCC and VEE are its
external connections. The three .model lines define devices that are local, that is, they are only accessible
within the subcircuit definition.

.subckt SXOA1000 VINP VINN VOUT VCC VEE
I2 D2_N VEE 100u
I1 Q3_E VEE 100u
C1 VOUT R1_P 10p
D1 Q7_C D1_N D1
D2 D1_N D2_N D1
D3 VEE Q3_E D1
Q2 VEE D2_N VOUT 0 P1
Q3 Q3_C R3_P Q3_E 0 N1
Q1 VCC Q7_C VOUT 0 N1
Q6 Q3_C Q3_C VCC 0 P1
Q7 Q7_C Q5_C VCC 0 P1
R1 R1_P Q5_C 100
Q4 Q5_C R2_N Q3_E 0 N1
R2 VINP R2_N 1K

30
SIMetrix Simulator Reference Manual

3.4. Subcircuits

Q5 Q5_C Q3_C VCC 0 P1
R3 R3_P VINN 1K

.model N1 NPN VA=100 TF=1e-9

.model P1 PNP VA=100 TF=1e-9

.model D1 D

.ends

Where to Place Subcircuit Definition

Subcircuit definitions may be placed in a number of locations.

• Directly in the netlist. This is the best place if the subcircuit is specific to a particular design. If you
are entering the circuit using the schematic editor, see Simulator Reference Manual/Running the
Simulator/Using the Simulator with the SIMetrix Schematic Editor/Adding Extra Netlist Lines to
find out how to add additional lines to the netlist.

• Put in a separate file and pull in to the schematic with .INC statement placed in the netlist.

• Put in a library file and reference in schematic with SIMetrix form of .LIB statement placed in the
netlist. Similar to 2. but more efficient if library has many models not used in the schematic. Only
the devices required will be read in.

• Put in a library file and install as a model library. See User’s Manual/Device Library and Parts
Management/Installing Models for full details.

3.4.3 Subcircuit Instance

Once a subcircuit has been defined, any number of instances of it may be created. These are of the form:

Xxxxx nodelist sub_circuitname [[params:|:] parameters]

nodelist List of nodes, each of which will connect to its corresponding node in the
subcircuit’s definition. The number of nodes in the instance must exactly
match the number of nodes in the definition.

sub_circuitname Name of the subcircuit definition.

parameters List of parameter names and their values in the form name=value. These
may be referenced in the subcircuit definition. Subcircuit parameters are
explained below.

3.4.4 Passing Parameters to Subcircuits

You can pass parameters to a subcircuit. Consider the filter example provided in Using Expressions.
Supposing we wanted to define several filters with different characteristics. We could use a subcircuit to
define the filter but the values of the components in the filter need to be different for each instance. This
can be achieved by passing the parameter values to each instance of the subcircuit.

So:

** Definition
.SUBCKT Filter IN OUT params: C1=1n alpha=1 f0=1k
C2 0 R1_P {C1*alpha*alpha/4}
C1 OUT R1_N {C1}
E1 OUT 0 R1_P 0 1
R1 R1_P R1_N {2/(2*pi*f0*C1*alpha)}
R2 R1_N IN {2/(2*pi*f0*C1*alpha)}

31
SIMetrix Simulator Reference Manual

3.4. Subcircuits

.ENDS

** Subcircuit instance
X1 V1_P VOUT Filter : C1=10n alpha=1 f0=10k

** AC source
V1 V1_P 0 AC 1 0

In the above example the parameters after params: in the .subckt line define default values should any
parameters be omitted from the subcircuit instance line. It is not compulsory to define defaults but is
generally recommended.

Note

In the syntax definition for both subcircuit definitions and subcircuit instances, the params: specifier is
shown as optional. If params: is included the ‘=’ separating the parameter names and their values becomes
optional.

3.4.5 Nesting Subcircuits

Subcircuit definitions may contain both calls to other subcircuits and local subcircuit definitions.

If a subcircuit definition is placed within another subcircuit definition, it becomes local. That is, it is only
available to its host subcircuit.

Calls to subcircuits may not be recursive. A subcircuit may not directly or indirectly call its own definition.

3.4.6 Global Nodes

Sometimes it is desirable to refer to a node at the circuit’s top level from within a subcircuit without having
to explicitly pass it. This is sometimes useful for supply rails.

SIMetrix provides three methods.

• ‘#’ prefix. Any node within a subcircuit prefixed with ‘#’ will connect to a top level node of the
same name without the ‘#’ prefix.

• ‘$g_’ prefix. Any node in the circuit prefixed ‘$g_’ will be treated as global.

• Using .GLOBAL.

The second approach is compatible with PSpice®. The third approach is compatible with Hspice®

Note the first two approaches are subtly different. In the second approach the ‘$g_’ prefix must be applied
to all connected nodes, whereas in the first approach the ‘#’ prefix must be applied only to subcircuit nodes.

3.4.7 Subcircuit Preprocessing

SIMetrix features a netlist preprocessor that is usually used for SIMPLIS simulations and was developed
for that purpose. The preprocessor has some features that aren’t available in the native simulator and for
this reason it would be useful to be able to use the preprocessor for SIMetrix simulations.

It is not necessary to apply the preprocessor to the entire netlist. Any subcircuit call that defines
preprocessor variables using the ‘vars:’ specifier will be passed to the preprocessor. For example:

X$C1 R1_P 0 ELEC_CAP_L13 vars: LEVEL=3 CC=1m
+ RSH_CC=1Meg IC=0 RESR=10m LESL=100n USEIC=1

32
SIMetrix Simulator Reference Manual

3.5. Model Binning

calls the ELEC_CAP_L13 subcircuit but passes it through the preprocessor first. This model is a model for
an electrolytic capacitor and uses a number of .IF statements to select model features according to the
LEVEL parameter.

The preprocessor also provides a means of generating multiple devices using .WHILE. For information on
the preprocessor, see the SIMPLIS Reference Manual/Running SIMPLIS/Netlist Preprocessor.

3.5 Model Binning

3.5.1 Overview

Some devices can be binned. This means that a number of different model definitions can be provided for
the same device with each being valid over a limited range of some device parameter or parameters. The
simulator will automatically select the appropriate model according to the value given for the device
parameters.

Currently only BSIM3, BSIM4 and HiSIM HV MOSFETs may be binned. The binning is controlled by
the length and width device parameters (L and W) while the LMIN, LMAX, WMIN and WMAX model
parameters specify the valid range for each model.

Important Note

The binned models should be placed directly in the netlist or called using either .INC or the Hspice® form
of .LIB. They will not work correctly when installed as a model library or accessed with the SIMetrix form
of .LIB.

3.5.2 Defining Binned Models

Binned models are defined as a set consisting of two or more .MODEL definitions. Each of the definitions
must be named using the following format:

root_name.id

root_name Name used by the device to call the model. Must be the same for all model
definitions in a set

id Arbitrary name that must be unique for each model in a set. This would
usually be a number but this is not a requirement

Each model definition must also contain a MIN/MAX parameter pair for each bin control parameter. For
the BSIM3 MOSFET there are two bin control parameters, namely L and W with corresponding
MIN/MAX pairs LMIN/LMAX and WMIN/WMAX. For a binned BSIM3 model, all four must be
present. These parameters define the range of L and W over which the model is valid. When a model is
required, the simulator searches all models with the same root_name for a definition whose LMIN/LMAX
and WMIN/WMAX parameters are compatible with the device’s L and W.

3.5.3 Example

.MODEL N1.1 NMOS LEVEL=49 ... parameters ...
+ LMIN=1u LMAX=4u WMIN=1u WMAX=4u

.MODEL N1.2 NMOS LEVEL=49 ... parameters ...
+ LMIN=4u LMAX=10u WMIN=1u WMAX=4u

33
SIMetrix Simulator Reference Manual

3.6. Language Differences

.MODEL N1.3 NMOS LEVEL=49 ... parameters ...
+ LMIN=1u LMAX=4u WMIN=4u WMAX=10u

.MODEL N1.4 NMOS LEVEL=49 ... parameters ...
+ LMIN=4u LMAX=10u WMIN=4u WMAX=10u

** This device will use N1.1
M1 1 2 3 4 N1 L=2u W=2u

** This device will use N1.2
M2 1 2 3 4 N1 L=6u W=2u

** This device will use N1.3
M3 1 2 3 4 L=2u W=7u

** This device will use N1.4
M4 1 2 3 4 L=6u W=7u

3.6 Language Differences

SIMetrix is compatible with some PSpice® and Hspice® extensions mainly so that it can read external
model files. Some aspects of these alternative formats are incompatible with the SIMetrix native format
and in such cases it is necessary to declare the language being used. See Language Declaration for details
on how to do this.

The following sections describe the incompatibilities between the three languages.

3.6.1 Inline Comment

Hspice® uses the dollar (‘$’) symbol for inline comments while SIMetrix and PSpice® use a semi-colon
(‘;’). The language declaration described above determines what character is used.

3.6.2 Unlabelled Device Parameters

The problem with unlabelled device parameters is illustrated with the following examples.

The following lines are legal in Hspice® mode but illegal in SIMetrix mode.
.PARAM area=2
Q1 C B E S N1 area

Q1 will have an area of 2. Conversely the following is legal in SIMetrix but is illegal in Hspice®:
.PARAM area=2
Q1 C B E S N1 area area

Again Q1 has an area of 2.

The problem is that SIMetrix does not require ‘=’ to separate parameter names with their values whereas
Hspice® does. area is a legal BJT parameter name so in the first example SIMetrix can’t tell whether area
refers to the name of the BJT parameter or the name of the .PARAM parameter defined in the previous
line. Hspice® can tell the difference because if area meant the BJT parameter name it would be followed
by an ‘=’.

This line is legal and will be correctly interpreted in both modes
.PARAM area=2
Q1 C B E S N1 area=area

Although Hspice® always requires the ‘=’ to separate parameter names and values, it continues to be
optional in SIMetrix even in Hspice® mode. It only becomes compulsory where an ambiguity needs to be
resolved as in the second example above.

34
SIMetrix Simulator Reference Manual

3.7. Customising Device Configuration

3.6.3 LOG() and PWR()

The LOG() function means log to the base 10 in SIMetrix but in PSpice® and Hspice® means log to the
base e. PWR() in PSpice® and SIMetrix means |x|y whereas in Hspice® it means “if x ≥ 0, |x|y else
−|x|y”. The language declaration only affects the definition when used in expressions to define model and
device parameters. When used in arbitrary source expressions, the language assumed is controlled by the
method of implementing the device as follows:

SIMetrix:

B1 1 2 V=expression

PSpice®

E1 1 2 VALUE = {expression }

Hspice®

E1 1 2 VOL = `expression'

Note that the function LN() always means log to base e and LOG10() always means log to base 10. We
recommend that these functions are always used in preference to LOG to avoid confusion.

3.7 Customising Device Configuration

3.7.1 Overview

Models for discrete devices and for integrated circuit processes come from a variety of sources and are
often designed for particular simulators, in particular, PSpice and Hspice. These simulators are not
generally compatible with each other so it is not easy for SIMetrix to be simultaneously compatible with
both. Further, SIMetrix itself needs to retain backward compatibility with its own earlier versions.

An example of conflict can be found with the standard diode. The SIMetrix diode with no level parameter
specified is mainly compatible with PSpice. But the standard Hspice diode is quite different and not
compatible. The SIMetrix Level=3 diode is however compatible with Hspice both for level=1 and level=3.
To use Hspice level=1 diode models the user has to edit the model so that level is changed to 3.

It is not always convenient to modify model files and for this reason SIMetrix provides two methods to
globally change level numbers and model names needed to select a particular device model. These are:

.MAP statement

Device configuration file

Both methods work the same way; the difference is the scope and lifetime of the changes. .MAP works
only for the netlist in which it appears, whereas the device configuration file is a permanent setting and
works for all simulations.

3.8 Initial Conditions

Initial conditions may be applied to capacitors and inductors and may also be applied to a single node
using the .IC statement. Initial conditions force a voltage or current to be applied during the DC operating
point analysis. Here we describe the various methods to apply an initial condition.

35
SIMetrix Simulator Reference Manual

3.8. Initial Conditions

3.8.1 Node Initial Condition

A voltage initial condition may be applied to a node using the .IC statement, see .IC. This method applies
the initial condition through a fixed resistor. In effect the following circuit is applied to the node during the
DC operating point then removed when the main analysis starts:

The above shows a driving resistance of 1Ω. This is the default value but can be changed using the ICRES
option:

.OPTIONS ICRES=1m

The above sets the resistance to 1mΩ.

Note that an initial condition may also be applied to a node or across a pair of nodes using a capacitor with
a value of zero. See next section.

3.8.2 Capacitor Initial Condition

An initial condition may be defined for a capacitor using the IC parameter. The following diagram shows
how this is configured:

The actual interpretation of the IC parameter depends on the INITCONDMODE option setting:
.OPTIONS INITCONDMODE=0|1|2

It also depends on the BRANCH parameter on the capacitor:
Cxxxx n1 n2 capacitance IC=init_condition BRANCH=0|1

The different configurations have come about because of a need for compatibility with other simulators,
namely SIMPLIS, Berkeley SPICE and PSpice.

The following table describes the various configurations:

36
SIMetrix Simulator Reference Manual

3.8. Initial Conditions

IC
defined

BRANCH INITCONDMODE Configuration

NO 0 X No initial condition applied

NO 1 X Initial condition=0V, driving
resistance=0Ω

YES 0 0 Berkeley SPICE compatible. Initial
condition=IC only if UIC specified
on .TRAN statement

YES 0 1 SIMPLIS compatible.
Initial condition=IC, driving
resistance=0Ω

YES 0 2 PSpice compatible.
Initial condition=IC, driving
resistance=ICRES
(default=1Ω)

YES 1 X SIMPLIS compatible.
Initial condition=IC, driving
resistance=0Ω

Note that for full PSpice compatibility, the ICRES option should be set to 1m. Alternatively the option
setting PSPICECOMPATIBILITY=1 or PSPICECOMPATIBILITY=2 may be set which sets ICRES to 1m
and INITCONDMODE to 2.

3.8.3 Inductor Initial Condition

An initial condition may be defined for a inductor using the IC parameter. The following diagram shows
how this is configured:

The actual interpretation of the IC parameter depends on the INITCONDMODE option setting:

.OPTIONS INITCONDMODE=0|1|2

37
SIMetrix Simulator Reference Manual

3.8. Initial Conditions

It also depends on the BRANCH parameter on the inductor:

Lxxxx n1 n2 inductance IC=init_condition BRANCH=0|1

The different configurations have come about because of a need for compatibility with other simulators,
namely SIMPLIS, Berkeley SPICE and PSpice.

The following table describes the various configurations:

IC
defined

BRANCH INITCONDMODE Configuration

NO 1 X No initial condition applied

NO 0 X Initial condition=0A, shunt
resistance=∞

YES 1 0 Berkeley SPICE compatible. Initial
condition=IC only if UIC specified
on .TRAN statement

YES 1 1 SIMPLIS compatible.
Initial condition=IC, shunt
resistance=∞

YES 1 2 PSpice compatible.
Initial condition=IC, shunt
resistance=1e9 Ω

YES 0 X SIMPLIS compatible.
Initial condition=IC, shunt
resistance=∞

38
SIMetrix Simulator Reference Manual

4.3. ASM HEMT Gallium Nitride FET Model

Chapter 4

Analog Device Reference

4.1 Overview

This chapter provides the full details of every option and parameter available with every primitive analog
device that the simulator supports.

For documentation on digital and mixed signal devices supplied with SIMetrix, please see Digital/Mixed
signal Device Reference.

4.2 Further Documentation

Some devices are fully documented by their developers and we have not repeated that documentation here.
In most cases the documents may be found at our web site:

https://www.simetrix.co.uk/app/supplementary.htm

then click on Download links. You will need a user name and password to access this page.

4.3 ASM HEMT Gallium Nitride FET Model

The "Advanced Spice Model High Electron Mobility Transistor" model is available with Pro and Elite
versions. The model was developed for the emerging Gallium Nitride technology that is increasingly used
for high-voltage high-frequency power applications. The current version implemented in SIMetrix is
101.0.0.

The ASM HEMT model was developed by Sourabh Khandelwal and others currently at Macquarie
University, Sydney, Australia.

Documentation for the model may be found at the SIMetrix web site. See Further Documentation

4.3.1 Netlist Entry

Uxxx drain gate source bulk temperature modelname instance_parameters

Where

modelname Model name

instance_parameters Instance parameters

39
SIMetrix Simulator Reference Manual

4.4. AC Table Lookup

4.3.2 Model Syntax

.MODEL modelname ASMHEMT model_parameters

Where

modelname Model name (as referenced in netlist line)

model_parameters Model parameters

4.3.3 Notes

The device may have 4 or 5 terminals with the netlist format as shown above.

Self heating will be modelled if the parameter SHMOD is non-zero and RTH0 is greater than zero. If the
temperature node is present it can be used to add a thermal network. If omitted, an internal temperature
node labelled dt will be used to implement self-heating effects. This node can be probed using the name
REF#dt. For example, if the device has the reference U23, the internal temperature node may be accessed
using the name U23#dt. To access internal nodes the KeepInternal option setting must be set. See Option
Settings

4.4 AC Table Lookup (including S-Parameters)

4.4.1 Netlist Entry

Uxxx node_pairs modelname

Where

node_pairs Pairs of nodes for each port. So for example, a two port device has four
nodes.

modelname Model name

4.4.2 Model Format

.MODEL modelname actable LOAD=filename [
NUMPORTS=number_of_ports] [DCMETHOD=extrapolate|extend]
[]INTERPMETHOD=yparams|sparams]
[DCPARAMS=[dcgainvalues]]

Where:

filename Name of file containing frequency table. File uses Touchstone format and
may contain s-parameters or y-parameters. Other parameter types are not
currently supported.

number_of_ports Number of ports. Default value is 2.

DCMETHOD Has values of ‘extrapolate’ (default) or ‘extend’. This determines how the
DC gains are calculated if they are not explicitly defined using the
DCPARAMS parameter or with an explicit F=0 term in the definition file.
With ‘extrapolate’, the dc values are calculated by extrapolating back to
zero; with ‘extend’, the DC gain is the same as the lowest frequency
gain.

40
SIMetrix Simulator Reference Manual

4.5. Arbitrary Source

INTERPMETHOD Has values ‘yparam’ (default) or ‘sparam’ . Only effective for s-parameter
files. SIMetrix implements s-parameter tables by converting the
parameters to y-parameters. Y-parameters can be directly modelled by the
simulator core. For a frequency sweep, SIMetrix must interpolate the data
in the table to work out the device behaviour for frequencies that lie
between table points. This parameter determines whether the original
s-parameter values are interpolated or the converted y-parameter values are
interpolated. Interpolating the y-parameters is usually faster but sometimes
interpolating the s-paraneter data yields smoother results.

dcgainvalues Vector providing the DC gain values for the network. This is expected to
be an n x n matrix where n is the number of ports.

4.4.3 AC Table Notes

The AC Table device implements a circuit device that is defined by a frequency lookup table. This device
operates only in the small signal analysis modes, AC, Noise and TF. In transient and DC analyses it
behaves like a simple linear DC gain block with no frequency dependence.

The lookup table for this device must be defined by a file and uses the industry standard ‘Touchstone’
format. The full details of this format are supplied as a separate document and maybe found on the
SIMetrix web site. Please visit Further Documentation for details. The document is freely distributable
under the terms described therein and may also be found at various Internet sites.

The SIMetrix implementation of the touchstone format includes the following:

1. Y-parameters to any number of ports

2. S-parameters to any number of ports

Although there is no hard limit to the number of ports, there is likely to be a practical upper limit for
s-parameters as these require conversion to y-parameters. A definition with a very large number of ports
will likely be slow to run and maybe subject to substantial errors.

Z, H and G parameters are not supported. Also, noise parameters are not supported.

Touchstone files traditionally use the extension snp (s-parameters) or ynp (y-parameters) where n indicates
the number of ports. Be aware that SIMetrix uses the NUMPORTS parameter in the .model statement to
determine the number of ports and will ignore the value of n in the filename extension.

4.5 Arbitrary Source

4.5.1 Netlist Entry

Voltage source:

Bxxxx n+ n- [MIN=min_value] [MAX=max_value] V=expression

Current source:

Bxxxx n+ n- [MIN=min_value] [MAX=max_value] [M=multiplier] I=expression

Charge source:

Bxxxx n+ n- [M=multiplier] Q=expression

Flux source:

Bxxxx n+ n- FLUX=expression

41
SIMetrix Simulator Reference Manual

4.5. Arbitrary Source

An arbitrary source is a voltage or current source whose output can be expressed as an arbitrary
relationship to other circuit voltages or currents.

expression Algebraic expression describing voltage or current output in terms of
circuit nodes or sources. See Using expresions for full details.

min_value Minimum value of source

max_value Maximum value of source

multiplier Scale factor. Source will behave as if there multiplier devices in
parallel

Bxxxx Component reference

n+ Positive output node.

n- Negative output node.

The small-signal AC behaviour of the non-linear source is a linear dependent source with a proportionality
constant equal to the derivative (or derivatives) of the source at the DC operating point.

Note that if MIN and/or MAX parameters are specified, they must precede the defining expression.

Charge and flux sources implement capacitors and inductors respectively. See charge and Flux Devices for
details.

If the source is a current, the direction of flow is into the positive node (n+).

4.5.2 Notes on Arbitrary Expression

It is essential that the expression used for an arbitrary source is well conditioned. This means that it must
be valid for all values (i.e. from −∞ to +∞) of its input variables (i.e. circuit voltages and currents) and
that it is continuous. It is also desirable - although not always absolutely necessary - for the function to be
continuous in its first derivative; i.e. it does not have any abrupt changes in slope.

A badly designed expression will lead to poor convergence, non-convergence or slow run times. This is
especially the case if the source is used in a feedback loop. If the arbitrary source is used open loop then
the above conditions can sometimes be relaxed especially if the input signal is well defined e.g. derived
directly from a signal source.

Some functions are not continuous in nature. E.g. the STP() and SGN() functions are not. These may
nevertheless be used in an expression as long as the end result is continuous.

Similarly, the IF() function (or ternary conditional using ‘?’ and ‘:’) should be used with care. The
following IF() function is continuous:

IF(v1>v2, 0, (v1-v2)*2)

When v1=v2 both true and false values equate to zero so the function has no abrupt change. The function
still has a discontinuous first derivative with respect to both v1 and v2 which is still undesirable but will
work satisfactorily in most situations.

The following example is not continuous:

IF(v1>v2, 0, 5)

The result of this will switch abruptly from 0 to 5 when v1=v2. This is not something that the simulator
can be guaranteed to handle and cannot be implemented in real life.

A better, albeit less intuitive method, of achieving the intent of the above is:

(TANH((v2-v1)*factor)+1)*2.5+2.5

42
SIMetrix Simulator Reference Manual

4.5. Arbitrary Source

where factor is some number that determines the abruptness of the switching action. For a value of 147,
95% of the full output will be achieved with just 10mV overdrive.

Alternatively the IF functions slew rate feature may be used:

IF(v1>v2, 0, 5, 1e9)

See IF() Function for further details.

4.5.3 Charge and Flux Devices

It is possible to define capacitors and inductors directly using the arbitrary source. Capacitors must be
defined in terms of their charge and inductors by their flux. These are defined in the same as voltage and
current arbitrary sources but using ‘q’ or ‘flux’ instead of ‘v’ or ‘i’. E.g. the following defines a simple
linear capacitor:

B1 n1 n2 Q = C*V(n1,n2)

Similarly a linear inductor is:

B1 n1 n2 flux = L * i(B1)

The main benefit of this feature is that it makes it possible to define non-linear capacitors and inductors
directly. It is also possible to use the ddt() and sdt() functions to create capacitors and inductors using
regular current and voltage sources. However, the above method is more efficient.

As with voltage and current arbitrary sources, it is possible to use any combination of voltages and
currents in the expression. So, for example, the following defines a transformer:

Bprimary p1 p2 flux = Lp*i(Bprimary) + M*i(Bsecondary)
Bsecondary s1 s2 flux = Ls*i(Bsecondary) + M*i(Bprimary)

4.5.4 Arbitrary Source Examples

Example 1 - Ideal Power Converter

This examples also demonstrates the use of expressions within subcircuits (see Using Expressions).

The following subcircuit implements an idealised power converter with an efficiency of eff and whose
output voltage is proportional to the input voltage (vinn,vinp) multiplied by the control voltage (vcp,vcn).
It is intended to simulate the voltage/current characteristics of a switching power converter.

.subckt powerconv voutp voutn vinp vinn vcp vcn
biin1 vinp vinn i=-v(voutp,voutn)/v(vinp,vinn)*i(vout1)/{eff}
vout1 bmult1_n voutn 0
bmult1 voutp bmult1_n v=v(vinp,vinn)*v(vcp,vcn)
r1 vcp vcn 1meg
.ends

Once again, with an appropriate schematic symbol, the device can be placed on the schematic as a block as
shown below:

43
SIMetrix Simulator Reference Manual

4.5. Arbitrary Source

Example 2 - Voltage Multiplier

The expression for an arbitrary source must refer to other voltages and/or currents on the schematic.
Currents are referenced as voltage sources and voltages as netnames. Netnames are usually allocated by
the netlister. For information on how to display and edit the schematic’s netnames, refer to Displaying Net
and Pin Names.

In the above circuit the voltage across B1 will be equal to the product of the voltages at nodes n1 and n2.

An alternative approach is to define the arbitrary source within a subcircuit. E.g.

.subckt MULT out in1 in2
B1 out 0 V=V(in1)*V(in2)
.ends

which can be added to the netlist manually. (To find out how to add additional lines to the netlist when
using the schematic editor, refer to Adding Extra Netlist Lines). A symbol could be defined for it and then
placed on the schematic as a block as shown below:

44
SIMetrix Simulator Reference Manual

4.5. Arbitrary Source

Example 3 - Voltage comparator

B3 q3_b 0 V=atan(V(n1,n2)*1000)

This can also be added to the schematic in the same way as for the multiplier described above.

4.5.5 PSpice and Hspice syntax

SIMetrix supports the PSpice® and Hspice® syntax for arbitrary sources. This is for compatibility with
some manufacturers device models. For PSpice® the VALUE = and TABLE = devices are supported as
well as Q (charge) and F (flux) devices. For Hspice® VOL= and CUR= are supported.

Basic syntax for PSpice sources is as follows:

Voltage source:

Exxxx node1 node2 VALUE {expression}

Current source:

Gxxxx node1 node2 VALUE {expression}

Charge source:

Exxxx node1 node2 Q {expression}

Flux source:

Exxxx node1 node2 F {expression}

In all of the above, expression is in the same format and can use the same functions as the native SIMetrix
arbitrary source with some important differences as described below:

• The log() function is natural log. In the SIMetrix native source, log() means log to base 10. To avoid
confusion it is always best to use ln() for natural log and log10() for log to base 10.

• The ˆ operator means exclusive-or if used in the test expression of an IF() function otherwise it
means raise-to-power. In the SIMetrix native source it always means raise-to-power.

45
SIMetrix Simulator Reference Manual

4.6. Bipolar Junction Transistor

4.6 Bipolar Junction Transistor (SPICE Gummel Poon)

4.6.1 Netlist Entry

Qxxxx collector base emitter [substrate] modelname [area] [OFF] [IC=vbe,vce]
[TEMP=local_temp] [M=mult] [DTEMP=dtemp]

collector Collector node name

base Base node name

emitter Emitter node name

substrate Substrate node name

modelname Name of model. Must begin with a letter but can contain any character
except whitespace and ‘.’.

area Area multiplying factor. Area scales up the device. E.g. an area of 3 would
make the device behave like 3 transistors in parallel. Default is 1.

OFF Instructs simulator to calculate operating point analysis with device
initially off. This is used in latching circuits such as thyristors and
bistables to induce a particular state. See .OP for more details.

vbe,vce Initial conditions for base-emitter and collector-emitter junctions
respectively. These only have an effect if the UIC parameter is specified
on the .TRAN statement (see .TRAN).

local_temp Local temperature. Overrides specification in .OPTIONS or .TEMP
statements.

mult Device multiplier. Equivalent to putting mult devices in parallel.

dtemp Differential temperature. Similar to local_temp but is specified relative to
circuit temperature. If both TEMP and DTEMP are specified, TEMP takes
precedence.

4.6.2 NPN BJT Model Syntax

.model modelname NPN (parameters)

4.6.3 PNP BJT Model Syntax

.model modelname PNP (parameters)

4.6.4 Lateral PNP BJT Model Syntax

.model modelname LPNP (parameters)

4.6.5 BJT Model Parameters

The symbols ‘×’ and ‘÷’ in the Area column means that the specified parameter should be multiplied or
divided by the area factor respectively.

Name Description Units Default Area

IS Transport saturation current A 1e-
16

∞

46
SIMetrix Simulator Reference Manual

4.6. Bipolar Junction Transistor

Name Description Units Default Area

BF Ideal maximum forward beta 100

NF Forward current emission coefficient 1.0

VAF,
VA

Forward Early voltage V ∞

IKF, IK Corner for forward beta high current
roll-off

A ∞ ∞

ISE B-E leakage saturation current A 0 ∞
NE B-E leakage emission coefficient 1.5

BR Ideal maximum reverse beta 1

NR Reverse current emission coefficient 1

VAR Reverse Early voltage V ∞
IKR Corner for reverse beta high current

roll-off
A ∞ ∞

ISC B-C leakage saturation current A 0 ∞
NC B-C leakage emission coefficient 2

NK,
NKF

0.5

RB Zero bias base resistance Ω 0

IRB Current at which base resistance falls halfway
to its minimum value

A ∞ ∞

RBM Minimum base resistance at high
currents

Ω RB

RE Emitter resistance Ω 0

RC Collector resistance Ω 0

CJE B-E zero-bias depletion capacitance F 0 ∞
VJE, PE B-E built in potential V 0.75

MJE,
ME

B-E junction exponential factor 0.33

TF Ideal forward transit time Sec. 0

XTF Coefficient for bias dependence of TF 0

VTF Voltage describing VBC dependence of
TF

V ∞

ITF High-current parameter for effect on
TF

A 0 ∞

PTF Excess phase at freq=1.0/(TF×2π) Hz degree 0

CJC B-C zero-bias depletion capacitance F 0 ∞
VJC,
PC

B-C built-in potential V 0.75

MJC,
MC

B-C junction exponential factor 0.33

XCJC Fraction of B-C depletion capacitance
connected to internal base node

1

TR Ideal reverse transit time Sec. 0

47
SIMetrix Simulator Reference Manual

4.6. Bipolar Junction Transistor

Name Description Units Default Area

ISS Substrate diode saturation current A 0 ∞
NS Substrate diode emission coefficient 1

CJS,
CCS

Zero-bias collector substrate
capacitance

F 0 ∞

VJS, PS Substrate junction built-in potential V 0.75

MJS,
MS

Substrate junction exponential factor 0

XTB Forward and reverse beta temperature
exponent

0

EG Energy gap eV 1.11

XTI Temperature exponent for effect on IS 3

FC Coefficient for forward-bias depletion
capacitance formula

0.5

TNOM, TREF,
t_measured

Reference temperature; the temperature at
which the model parameters were
measured

C 27

T_ABS If specified, defines the absolute model
temperature overriding the global temperature
defined using .TEMP

C -

T_REL_
GLOBAL

Offsets global temperature defined using
.TEMP. Overridden by T_ABS

C 0

KF Flicker noise coefficient 0

AF Flicker noise exponent 1.0

EF Flicker noise exponent 1.0

KFR Reverse flicker noise coefficient KF

AFR Reverse flicker noise exponent AF

EFR Reverse flicker noise exponent EF

NOISMOD Model selector. 1 (default) selects a corrected
model for base shot and flicker noise. See to 0
for compatibility with earlier versions and
other simulators

1

VO V 10.0

QCO Epitaxial region charge factor coulomb 0.0 ∞
QUASIMOD Quasi saturation temperature flag:

QUASIMOD=0: no temperature
dependence

QUASIMOD=1: temperature dependence
enabled

0

RCO Epitaxial region resistance. Set to non-zero to
enable quasi saturation model

0.0

GAMMA Epitaxial region doping factor 1e-
11

VG Quasi saturation extrapolated bandgap voltage
at 0K

V 1.206

48
SIMetrix Simulator Reference Manual

4.6. Bipolar Junction Transistor

Name Description Units Default Area

D Quasi saturation temp coeff for scattering
limited hole carrier velocity

NPN:
0.87

PNP
:0.52

CN Quasi saturation temp coeff for hole
mobility

NPN:
2.42

PNP:
2.20

NEPI 1.0

SUBS If set to -1, device is lateral 1.0

TRE1 First order temperature coefficient, RE 0.0

TRE2 Second order temperature coefficient,
RE

0.0

TRB1,
TRB

First order temperature coefficient, RB 0.0

TRB2 Second order temperature coefficient,
RB

0.0

TRM1 First order temperature coefficient,
RBM

0.0

TRM2 Second order temperature coefficient,
RBM

0.0

TRC1,
TRC

First order temperature coefficient, RC 0.0

TRC2 Second order temperature coefficient 0.0

4.6.6 Hspice Temperature Parameters

The parameters defined in the following table are temperature coefficients and apply if the Hspice
temperature model is enabled. This is the case if one or more of the following parameters are defined in
the .MODEL statement:

TLEV, TLEVC, TIKF1, TIKF2, TIKR1, TIKR2, TIRB1, TIRB2.

If none of these parameters are specified, the standard (SPICE) temperature model is enabled and the
following parameters have no effect.

Name Description Units Default

TLEV Temperature selector. Valid values are 0, 1, 2 or 3.

TLEVC Capacitance temperature selector. Valid values are 0, 1, 2 and 3

TIKF1 First order temperature coefficient, IKF

TIKF2 Second order temperature coefficient, IKF

TIKR1 First order temperature coefficient, IKR

TIKR2 Second order temperature coefficient, IKR

TIRB1 First order temperature coefficient, IRB

49
SIMetrix Simulator Reference Manual

4.6. Bipolar Junction Transistor

Name Description Units Default

TIRB2 Second order temperature coefficient, IRB

TIS1 First order temperature coefficient, IS. (TLEV=3)

TIS2 Second order temperature coefficient, IS. (TLEV=3)

TBF1 First order temperature coefficient, BF

TBF2 Second order temperature coefficient, BF

TBR1 First order temperature coefficient, BR

TBR2 Second order temperature coefficient, BR

TISE1 First order temperature coefficient, ISE. (TLEV=3)

TISE2 Second order temperature coefficient, ISE. (TLEV=3)

TISC1 First order temperature coefficient, ISC. (TLEV=3)

TISC2 Second order temperature coefficient, ISC. (TLEV=3)

TISS1 First order temperature coefficient, ISS. (TLEV=3)

TISS2 Second order temperature coefficient, ISS. (TLEV=3)

TVAF1 First order temperature coefficient, VAF

TVAF2 Second order temperature coefficient, VAF

TVAR1 First order temperature coefficient, VAR

TVAR2 Second order temperature coefficient, VAR

TITF1 First order temperature coefficient, ITF

TITF2 Second order temperature coefficient, ITF

TTF1 First order temperature coefficient, TF

TTF2 Second order temperature coefficient, TF

TTR1 First order temperature coefficient, TR

TTR2 Second order temperature coefficient, TR

TNF1 First order temperature coefficient, NF

TNF2 Second order temperature coefficient, NF

TNR1 First order temperature coefficient, NR

TNR2 Second order temperature coefficient, NR

TNE1 First order temperature coefficient, NE

TNE2 Second order temperature coefficient, NE

TNC1 First order temperature coefficient, NC

TNC2 Second order temperature coefficient, NC

TNS1 First order temperature coefficient, NS

TNS2 Second order temperature coefficient, NS

TMJE1 First order temperature coefficient, MJE

TMJE2 Second order temperature coefficient, MJE

TMJC1 First order temperature coefficient, MJC

TMJC2 Second order temperature coefficient, MJC

TMJS1 First order temperature coefficient, MJS

TMJS2 Second order temperature coefficient, MJS

TVJE VJE temperature coefficient. (TLEVC 6= 0)

50
SIMetrix Simulator Reference Manual

4.7. Bipolar Junction Transistor

Name Description Units Default

TVJC VJC temperature coefficient. (TLEVC 6= 0)

TVJS VJS temperature coefficient. (TLEVC 6= 0)

CTE CJE temperature coefficient. (TLEVC 6= 0)

CTC CJC temperature coefficient. (TLEVC 6= 0)

CTS CJS temperature coefficient. (TLEVC 6= 0)

4.6.7 Notes

The bipolar junction transistor model in SPICE is an adaptation of the integral charge control model of
Gummel and Poon.

This modified Gummel-Poon model extends the original model to include several effects at high bias
levels. The model will automatically simplify to the simpler Ebers-Moll model when certain parameters
are not specified.

The dc model is defined by the parameters IS, BF, NF, ISE, IKF, and NE which determine the forward
current gain characteristics, IS, BR, NR, ISC, IKR, and NC which determine the reverse current gain
characteristics, and VAF and VAR which determine the output conductance for forward and reverse
regions. Three ohmic resistances RB, RC, and RE are included, where RB can be high current dependent.
Base charge storage is modelled by forward and reverse transit times, TF and TR, the forward transit time
TF being bias dependent if desired, and non-linear depletion layer capacitances which are determined by
CJE, VJE, and MJE for the B-E junction, CJC, VJC, and MJC for the B-C junction and CJS, VJS, and
MJS for the C-S (Collector-Substrate) junction. The temperature dependence of the saturation current, IS,
is determined by the energy-gap, EG, and the saturation current temperature exponent, XTI. Additionally
base current temperature dependence is modelled by the beta temperature exponent XTB in the new model.

This implementation includes further enhancements to model quasi-saturation effects. This is governed by
the model parameters RCO, QCO, GAMMA and for temperature dependence, QUASIMOD, VG, D and
CN. The quasi-saturation model is compatible with PSpice. Hspice models may be accommodated by
setting RC to zero and RCO to the value of RC in the Hspice model.

References

The Quasi-saturation model was developed from the following paper:

George M. Kull, Laurence W. Nagel, Shiuh-Wuu Lee, Peter Lloyd, E. James Prendergast and Heinz Dirks,
“A Unified Circuit Model for Bipolar Transistors Including Quasi-Saturation Effects”. IEEE Transactions
on Electron Devices, Vol. ED-32, No 6 June 1985, pages 1103-1113

4.7 Bipolar Junction Transistor (VBIC without self heating)

4.7.1 Netlist Entry

Qxxxx collector base emitter [substrate] modelname [M=multiplier] [AREA|SCALE=area]

collector Collector node name

base Base node name

emitter Emitter node name

51
SIMetrix Simulator Reference Manual

4.7. Bipolar Junction Transistor

substrate Substrate node name

modelname Name of model. Must begin with a letter but can contain any character
except whitespace and ‘.’.

multiplier Device scale. Has an identical effect as putting multiplier devices in
parallel.

area Scales certain model parameters as described in the parameter table under
Area column. A × entry means the parameter is multiplied by the area
while a ÷ means the parameter is divided by the area.

4.7.2 Model Syntax

.MODEL modelname NPN|PNP LEVEL=4 parameters

4.7.3 Model Parameters

Name Description Units Default Area

TNOM/TREF Nominal ambient temperature Celsius 27

RCX Extrinsic collector resistance Ohms 0.0 ÷
RCI Intrinsic collector resistance Ohms 0.0 ÷
VO Epi drift saturation voltage 0.0

GAMM Epi doping parameter 0.0

HRCF High-current RC factor 1.0

RBX Extrinsic base resistance 0.0 ÷
RBI Intrinsic base resistance 0.0 ÷
RE Emitter resistance 0.0 ÷
RS Substrate resistance 0.0 ÷
RBP Parasitic base resistance 0.0 ÷
IS Transport saturation current 1.0E-16 ×
NF Forward emission coefficient 1.0

NR Reverse emission coefficient 1.0

FC Forward bias junction capacitance
threshold

0.9

CBEO/CBE0 Base-emitter small signal
capacitance

0.0 ×

CJE Base-emitter zero-bias junction
capacitance

0.0 ×

PE Base-emitter grading coefficient 0.75

ME Base-emitter junction exponent 0.33

AJE Base-emitter capacitance smoothing
factor

-0.5

CBCO/CBC0 Extrinsic base-collector overlap
capacitance

0.0 ×

CJC Base-collector zero-bias
capacitance

0.0 ×

52
SIMetrix Simulator Reference Manual

4.7. Bipolar Junction Transistor

Name Description Units Default Area

QCO/QC0 Collector charge at zero bias 0.0 ×
CJEP Base-emitter extrinsic zero-bias

capacitance
0.0 ×

PC Base-collector grading coefficient 0.75

MC Base-collector junction exponent 0.33

AJC Base-collector capacitance smoothing
factor

-0.5

CJCP Base-collector zero-bias extrinsic
capacitance

0.0 ×

PS Collector-substrate grading
coefficient

0.75

MS Collector-substrate junction
exponent

0.33

AJS Collector-substrate capacitance smoothing
factor

-0.5

IBEI Ideal base-emitter saturation
current

1E-18 ×

WBE Portion of IBEI from Vbei, (1-WBE) from
Vbex

1.0

NEI Ideal base-emitter emission
coefficient

1.0

IBEN Non-ideal base-emitter saturation
current

0.0 ×

NEN Non-ideal base-emitter emission
coefficient

2.0

IBCI Ideal base-collector saturation
current

1.0E-16 ×

NCI Ideal base-collector emission
coefficient

1.0

IBCN Non-ideal base-collector saturation
current

0.0 ×

NCN Non-ideal base- collector emission
coefficient

2.0

AVC1 Base-collector weak avalanche parameter
1

0.0

AVC2 Base-collector weak avalanche parameter
2

0.0

ISP Parasitic transport saturation
current

0.0 ×

WSP Portion of Iccp from Vbep, (1-WSP) from
Vbci

1.0

NFP Parasitic forward emission
coefficient

1.0

IBEIP Ideal parasitic base-emitter saturation
current

0.0 ×

53
SIMetrix Simulator Reference Manual

4.7. Bipolar Junction Transistor

Name Description Units Default Area

IBENP Non-ideal parasitic base-emitter saturation
current

0.0 ×

IBCIP Ideal parasitic base-collector saturation
current

0.0 ×

NCIP Ideal parasitic base-collector emission
coefficient

1.0

IBCNP Non-ideal parasitic base-collector
saturation current

0.0 ×

NCNP Non-ideal parasitic base-collector
emission coefficient

2.0

VEF Forward Early voltage (0=infinity) 0.0

VER Reverse Early voltage (0=infinity) 0.0

IKF Forward knee current, (0=inifinity) 0.0 ×
IKR Reverse knee current, (0=infinity) 0.0 ×
IKP Parasitic knee current (0=infinity) 0.0 ×
TF Forward transit time 0.0

QTF Variation of TF with base width
modulation

0.0

XTF Coefficient of TF bias dependence 0.0

VTF Coefficient of TF dependence on
Vbc

0.0

ITF Coefficient of TF dependence of
Icc

0.0

TR Ideal reverse transit time 0.0

TD Forward excess phase delay time 0.0

KFN Flicker noise coefficient 0.0

AFN Flicker noise exponent 1.0

BFN Flicker noise frequency exponent 1.0

XRE Temperature exponent of emitter
resistance

0.0

XRB Temperature exponent of base
resistance

0.0

XRC Temperature exponent of collector
resistance

0.0

XRS Temperature exponent of substrate
resistance

0.0

XV0/XV0 Temperature exponent of Vo 0.0

EA Activation energy for IS 1.12

EAIE Activation energy for IBEI 1.12

EAIC Activation energy for IBCI/IBEIP 1.12

EAIS Activation energy for IBCIP 1.12

EANE Activation energy for IBEN 1.12

54
SIMetrix Simulator Reference Manual

4.8. Bipolar Junction Transistor

Name Description Units Default Area

EANC Activation energy for
IBCN/IBENP

1.12

EANS Activation energy for IBCNP 1.12

XIS Temperature exponent of Is 3.0

XII Temperature exponent of
IBEI/IBCI/IBEIP/IBCIP

3.0

XIN Temperature exponent of
IBEN/IBCN/IBENP/IBCNP

3.0

TNF Temperature coefficient of NF 0.0

TAVC Temperature coefficient of AVC 0.0

4.7.4 Notes

The VBIC model is only available with Elite versions.

The Vertical Bipolar Inter-Company (VBIC) model is an advanced bipolar junction transistor model. This
is the 4-terminal non-thermal version. There is also a version that supports self-heating effects and has 5
terminals, see Bipolar Junction Transistor (VBIC with self heating).

For more information about VBIC, please refer to this link:

VBIC Reference

4.8 Bipolar Junction Transistor (VBIC with self heating)

4.8.1 Netlist Entry

Qxxxx collector base emitter substrate thermal_node modelname
[M=multiplier] [AREA|SCALE=area]

collector Collector node name

base Base node name

emitter Emitter node name

substrate Substrate node name

thermal_node See notes

modelname Name of model. Must begin with a letter but can contain any character
except whitespace and ‘.’ .

multiplier Device scale. Has an identical effect as putting multiplier devices in
parallel.

area Scales certain model parameters as described in the parameter table under
Area column. A∞ entry means the parameter is multiplied by the area
while a means the parameter is divided by the area.

4.8.2 Model Syntax

55
SIMetrix Simulator Reference Manual

http://www.simetrix.co.uk/app/ext/vbic.htm

4.10. Bipolar Junction Transistor

.MODEL modelname NPN|PNP LEVEL=1004 parameters

4.8.3 Model Parameters

Model parameters are identical to the non-thermal version except for the addition of the following:

Name Description Units Default Area

RTH Thermal resistance 0.0 ÷
CTH Thermal capacitance 0.0 ×

4.8.4 Notes

The VBIC model is only available with Elite versions.

This model is the same as the VBIC non-thermal model except for the addition of self-heating effects. Use
the non-thermal version if you do not need self-heating as its implementation is simpler and will run faster.

The thermal_node may be used to connect external thermal networks to model thermal flow. Power in
watts is represented by current and temperature rise in Kelvin is represented by the voltage. Note that the
voltage is temperature rise above the simulation temperature, not an absolute value.

4.9 Bipolar Junction Transistor (MEXTRAM)

See NXP Compact Models.

4.10 Bipolar Junction Transistor (HICUM)

4.10.1 Netlist Entry

Qxxxx collector base emitter [substrate] modelname

Where:

collector Collector node

base Base node

emitter Emitter node

substrate Substrate node

modelname Model name as used with .MODEL statement

4.10.2 NPN Model Syntax

.MODEL modelname NPN LEVEL=8 parameters

OR

.MODEL modelname HICUM_211 PNP=0 parameters

56
SIMetrix Simulator Reference Manual

4.11. Capacitor

4.10.3 PNP Model Syntax

.MODEL modelname PNP LEVEL=8 parameters

OR

.MODEL modelname HICUM_211 PNP=1 parameters

4.10.4 Notes

The model provided is “Level 2 version 2.11”.

The model was implemented from Verilog-A code. It has received only minor changes from the original
supplied by the developers. These changes are to implement PNP devices and to overcome a problem in
the original model whereby it is possible for it to converge to an erroneous state.

The SIMetrix implementation of this model has been tested using the benchmark results provided by the
developers. The majority of the tests showed a match of better than 0.1%. A few were over 1% with one
deviating by 7%. These were investigated and it was found that the reference data was in error probably
because of insufficient convergence tolerance.

4.11 Capacitor

4.11.1 Netlist Entry

Cxxxx n1 n2 [model_name] value [IC=initial_condition] [TEMP=local_temp]
[TC1=tc1] [TC2=tc2] [VC1=vc1] [VC2=vc2] [BRANCH=0|1] [M=mult] [DTEMP=dtemp]
[ESR=esr]

n1 Node 1

n2 Node 2

model_name (Optional) Name of model. Must begin with a letter but can contain any
character except whitespace and period ‘.’

value Capacitance (Farads)

initial_condition Initial voltage if UIC specified on .TRAN statement.

local_temp Capacitor temperature (°C)

tc1 First order temperature coefficient

tc2 Second order temperature coefficient

vc1 First order voltage coefficient

vc2 Second order voltage coefficient

BRANCH May be 0 or 1. 0 is the default. This parameter determines the internal
formulation of the capacitor and affects how the IC parameter is
implemented. When BRANCH=0, the capacitor looks like an open circuit
during the DC operating point and the IC parameter has no effect unless
UIC is specified for a transient analysis. If BRANCH=1, the capacitor
looks like a voltage source during dc operating point with a magnitude
equal to the value of the IC parameter. BRANCH=1 makes it possible to
specify circuit startup conditions. See Alternative Initial Condition
Implementations for an example.

mult Device multiplier. Equivalent to putting mult devices in parallel.

57
SIMetrix Simulator Reference Manual

4.12. Controlled Current Source

dtemp Differential temperature. Similar to local_temp but is specified relative to
circuit temperature. If both TEMP and DTEMP are specified, TEMP takes
precedence.

esr Effective series resistance. If non-zero (the default value), a resistor of
value esr will be connected in series with the capacitor. The resulting
implementation of a series RC network is more efficient and offers better
convergence than using a separate R and C. This is especially the case if
the capacitor has a high value and is non-grounded.

Important: this resistor is noiseless; if the noise in the ESR is important
in your design, you should use a separate resistor and omit this parameter
in the capacitor.

4.11.2 Model Syntax

.model modelname CAP (parameters)

4.11.3 Model Parameters

Name Description Units Default

C Capacitor multiplier 1

TC1 First order temperature coefficient 1/°C 0

TC2 Second order temperature
coefficient

1/°C2 0

VC1 First order voltage coefficient Volt-1 0

VC2 Second order voltage coefficient Volt-2 0

TNOM, T_MEASURED Reference temperature; the temperature at
which the model parameters were
measured

C 27

T_ABS If specified, defines the absolute model
temperature overriding the global
temperature defined using .TEMP

C -

T_REL_GLOBAL Offsets global temperature defined using
.TEMP. Overridden by T_ABS

C 0.0

4.12 Current Controlled Current Source

4.12.1 Netlist Entry

Linear Source

Fxxxx nout+ nout- vc current_gain [GOUT=output_conductance]

nout+ Positive output node

nout- Negative output node

58
SIMetrix Simulator Reference Manual

4.12. Controlled Current Source

vc Controlling device

current_gain Output current/Input current

output_conductance Conductance at output terminals

The controlling device can be any native (i.e. non-subcircuit) device in the circuit. The current used will be
the current flowing into its first terminal. The first terminal is the one that is first in the device’s netlist
entry. Note that if the device is not a voltage source or implemented as a voltage source, the current is
sensed by placing a zero-volt voltage source in series with the sensing device. This is done automatically
and no user action is required.

GOUT has a default value of zero unless the PSPICEGMIN option is set in which case it has a default
value of GMIN. GMIN is set using ".OPTIONS GMIN=value" and has a default value of 1e-12.

SPICE2 polynomial sources are also supported in order to maintain compatibility with commercially
available libraries for IC’s. (Some operational amplifier models for example use several polynomial
sources). In general, however the arbitrary source (see Arbitrary Source) is more flexible and easier to use.

Polynomial Source

Fxxxx nout+ nout- POLY(num_inputs) vc1 vc2 ...
+ polynomial_specification

vc1, vc2 Controlling voltage sources

num_inputs Number of controlling currents for source.

polynomial_specification See Polynomial Specification.

The specification of the controlling voltage source or source requires additional netlist lines. The schematic
netlister automatically generates these for the four terminal device supplied in the symbol library.

4.12.2 Example

59
SIMetrix Simulator Reference Manual

4.13. Current Controlled Voltage Source

In the above circuit, the current in the output of F1 (flowing from top to bottom) will be 0.1 times the
current in R2.

4.12.3 Polynomial Specification

The following is an extract from the SPICE2G.6 user manual explaining polynomial sources.

SPICE allows circuits to contain dependent sources characterised by any of the four equations

i=f(v)

v=f(v)

i=f(i)

v=f(i)

where the functions must be polynomials, and the arguments may be multidimensional. The polynomial
functions are specified by a set of coefficients p0, p1, ..., pn. Both the number of dimensions and the
number of coefficients are arbitrary. The meaning of the coefficients depends upon the dimension of the
polynomial, as shown in the following examples:

Suppose that the function is one-dimensional (that is, a function of one argument). Then the function value
fv is determined by the following expression in fa (the function argument):

fv = p0 + (p1.fa) + (p2.fa2) + (p3.fa3) + (p4.fa4) + (p5.fa5) + ...

Suppose now that the function is two-dimensional, with arguments fa and fb. Then the function value fv is
determined by the following expression:

fv = p0 + (p1.fa) + (p2.fb) + (p3.fa2) + (p4.fa.fb) + (p5.fb2)

+(p6.fa3) + (p7.fa2.fb) + (p8.fa.fb2) + (p9.fb3) + ...

Consider now the case of a three-dimensional polynomial function with arguments fa, fb, and fc. Then the
function value fv is determined by the following expression:

fv = p0 + (p1.fa) + (p2.fb) + (p3.fc) + (p4.fa2) + (p5.fa.fb) + (p6.fa.fc) + (p7.fb2) + (p8.fb.fc)

+(p9.fc2) + (p10.fa3) + (p11.fa2.fb) + (p12.fa2.fc) + (p13.fa.fb2) + (p14.fa.fb.fc)

+(p15.fa.fc2) + (p16.fb3) + (p17.fb2.fc) + (p18.fb.fc2) + (p19.fc3) + (p20.fa4) + ...

Note If the polynomial is one-dimensional and exactly one coefficient is
specified, then SPICE assumes it to be p1 (and p0 = 0.0), in order to
facilitate the input of linear controlled sources.

4.13 Current Controlled Voltage Source

4.13.1 Netlist Entry

Linear Source

Hxxxx nout+ nout- vc transresistance

60
SIMetrix Simulator Reference Manual

4.14. Current Source

nout+ Positive output node

nout- Negative output node

vc Controlling voltage source

transresistance Output current/Input current (Ω)

The controlling device can be any native (i.e. non-subcircuit) device in the circuit. The current used will be
the current flowing into its first terminal. The first terminal is the one that is first in the device’s netlist
entry. Note that if the device is not a voltage source or implemented as a voltage source, the current is
sensed by placing a zero-volt voltage source in series with the sensing device. This is done automatically
and no user action is required.

It is legal for the device to reference itself. E.g.

H1 n1 n2 H1 1

The above implements a 1 Ohm resistor.

SPICE2 polynomial sources are also supported in order to maintain compatibility with commercially
available libraries for IC’s. (Some Op-amp models use several polynomial sources). In general, however
the arbitrary source is more flexible and easier to use.

Polynomial Source

Hxxxx nout+ nout- POLY(num_inputs) vc1 vc2 ...
+ polynomial_specification

vc1, vc2 Controlling voltage sources

num_inputs Number of controlling currents for source.

polynomial_specification See Polynomial Specification.

The specification of the controlling voltage source or source requires additional netlist lines. The schematic
netlister automatically generates these for the four terminal device supplied in the symbol library.

4.14 Current Source

4.14.1 Netlist Entry

Ixxxx n+ n- [DC dcvalue] [AC magnitude [phase]] [transient_spec]

n+ Positive node

n- Negative node

dcvalue Value of source for dc operating point analysis

magnitude AC magnitude for AC sweep analysis.

phase phase for AC sweep analysis

61
SIMetrix Simulator Reference Manual

4.15. Diode - Level 1 and Level 3

transient_spec Specification for time varying source. Can be one of following:

Pulse see Pulse Source

Piece wise linear see Piece-Wise Linear Source

Sine see Sinusoidal Source

Exponential see Exponential Source

Single frequency FM see Single Frequency FM

Extended PWL Source see Extended PWL Source

4.15 Diode - Level 1 and Level 3

4.15.1 Netlist Entry

Dxxxx n+ n- model_name [area] [OFF] [IC=vd] [TEMP=local_temp]
+ [PJ=periphery] [L=length] [W=width] [M=mult] [DTEMP=dtemp]

n+ Anode

n- Cathode

model_name Name of model defined in a .MODEL statement. Must begin with a letter
but can contain any character except whitespace and ‘.’.

area Area multiplying factor. Area scales up the device. E.g. an area of 3 would
make the device behave like 3 diodes in parallel. Default is 1.

OFF Instructs simulator to calculate operating point analysis with device
initially off. This is used in latching circuits such as thyristors and
bistables to induce a particular state. See .OP for more details.

vd Initial condition for diode voltage. This only has an effect if the UIC
parameter is specified on the .TRAN statement.

local_temp Local temperature. Overrides specification in .OPTIONS or .TEMP
statements.

periphery Level 3 only. Junction periphery used for calculating sidewall
effects.

length Level 3 only. Used to calculate area. See below.

width Level 3 only. Used to calculate area. See below.

mult Device multiplier. Equivalent to putting mult devices in parallel.

dtemp Differential temperature. Similar to local_temp but is specified relative to
circuit temperature. If both TEMP and DTEMP are specified, TEMP takes
precedence.

62
SIMetrix Simulator Reference Manual

4.15. Diode - Level 1 and Level 3

4.15.2 Examples

4.15.3 Diode Model Syntax

.model modelname D (LEVEL=[1|3] parameters)

4.15.4 Diode Model Parameters - Level = 1

The symbols ‘×’ and ‘÷’ in the Area column means that the specified parameter should be multiplied or
divided by the area factor respectively.

Name Description Units Default Area

IS Transport saturation current A 1e-14 ×
ISR Recombination current parameter A 0 ×
N Emission coefficient 1

NR Emission Coefficient for ISR 2

IKF High injection knee current A ∞ ×
RS Series resistance Ω 0 ÷
TT Transit time sec 0

CJO or CJ0 Zero bias junction capacitance F 0 ×
VJ Junction potential V 1

M Grading coefficient 0.5

EG Energy gap eV 1.11

XTI Saturation current temperature
exponent

3

KF Flicker noise coefficient 0

AF Flicker noise exponent 1

FC Forward bias depletion capacitance
coefficient

0.5

BV Reverse breakdown voltage V ∞
IBV Current at breakdown voltage A 1e-10 ×
TNOM, T_MEASURED Parameter measurement

temperature
°C 27

T_ABS If specified, defines the absolute model
temperature overriding the global
temperature defined using .TEMP

°C -

63
SIMetrix Simulator Reference Manual

4.15. Diode - Level 1 and Level 3

Name Description Units Default Area

T_REL_ GLOBAL Offsets global temperature defined using
.TEMP. Overridden by T_ABS

°C 0

TRS1 First order tempco RS /°C 0

TRS2 Second order tempco RS /°C2 0

TBV1 First order tempco BV /°C 0.0

TBV2 Second order tempco BV /°C2 0.0

NBV Reverse breakdown ideality factor 1.0

NBVL Low-level reverse breakdown ideality
factor

1.0

IBVL Low-level reverse breakdown knee
current

Amp 0.0 ×

TIKF IKF temperature coefficient 0.0

Notes The dc characteristics of the diode are determined by the parameters IS, N, ISR, NR
and IKF. An ohmic resistance, RS, is included. Charge storage effects are modelled
by a transit time, TT, and a non-linear depletion layer capacitance which is
determined by the parameters CJO, VJ, and M. The temperature dependence of the
saturation current is defined by the parameters EG, the energy and XTI, the
saturation current temperature exponent. Reverse breakdown is modelled by an
exponential increase in the reverse diode current and is determined by the parameters
BV and IBV (both of which are positive numbers).

4.15.5 Diode Model Parameters - Level = 3

Name Description Units Default

AF Flicker noise exponent 1.0

BV, VB, VAR, VRB Reverse breakdown voltage V ∞
CJO, CJ Zero bias junction capacitance F 0.0

CJSW, CJP Zero bias sidewall capacitance F 0.0

CTA CJO temp coefficient. (TLEVC=1) °C−1

CTP CJSW temp coefficient.
(TLEVC=1)

°C−1

EG Energy gap ev 1.11

FC Forward bias depletion capacitance
coefficient

0.5

FCS Forward bias sidewall capacitance
coefficient

0.5

GAP1 7.02e-4 - silicon (old value)

4.73e-4 - silicon

4.56e-4 - germanium

5.41e-4 - gallium arsenide

eV/° 7.02e-4

64
SIMetrix Simulator Reference Manual

4.15. Diode - Level 1 and Level 3

Name Description Units Default

GAP2 1108 - silicon (old value)

636 - silicon

210 - germanium

204 - gallium arsenide

° 1108

IBV Current at breakdown voltage A 1E-3

IKF, IK High injection knee current A ∞
IKR Reverse high injection knee

current
A ∞

IS, JS Saturation current A 1E-14

ISR Recombination current A 0

JSW Sidewall saturation current A 0

KF Flicker noise exponent 0

MJ, M Grading coefficient 0.5

MJSW Sidewall grading coefficient 0.33

N, NF Forward emission coefficient 1.0

NR Recombination emission
coefficient

2.0

PHP Sidewall built in potential PB

RS Series resistance Ω 0

SHRINK Shrink factor 1.0

TCV BV temp coefficient °C-1 0

TLEV Temperature model selector. Valid values:
0, 1, 2

0

TLEVC Temperature model selector. Valid values:
0 or 1

0

TNOM, TREF Parameter measurement
temperature

27

TPB VJ temp coefficient (TLEVC=1) V/°C 0.0

TPHP PHP temp. coefficient (TLEVC=1) V/°C 0.0

TRS RS temp. coefficient °C−1 0.0

TT Transit time S 0.0

VJ, PB Built-in potential V 0.8

XW Shrink factor 0.0

DCAP Capacitance model (1 or 2) 1

The parameters CJSW and JSW are scaled by the instance parameter PJ whose default value is 0.0.

If L and W instance parameters are supplied, the diode is scaled by the factor:
M*(L*SHRINK-XW)*(W*SHRINK-XW) otherwise it is scaled by M*AREA.

65
SIMetrix Simulator Reference Manual

4.16. Diode - Soft Recovery

4.15.6 Using Hspice Diodes

In Hspice Level 1 diodes are the same as the SIMetrix Level 3 diode. To map Level 3 to Level 1, add this
line to the netlist

.OPTIONS HSPICEMODELS=1

This setting also has the same effect:

.OPTIONS HSPICECOMPATIBILITY=1

See .OPTIONS for more details

M and AREA are instance parameters which default to 1.0

4.16 Diode - Soft Recovery

4.16.1 Netlist Entry

Dxxxx n+ n- model_name [TEMP=local_temp]

n+ Anode

n- Cathode

model_name Name of model defined in a .MODEL statement. Must begin with a letter
but can contain any character except whitespace and ‘.’.

local_temp Local temperature. Overrides specification in .OPTIONS or .TEMP
statements.

4.16.2 Diode Model Syntax

.model modelname SRDIO (parameters)

4.16.3 Soft Recovery Diode Model Parameters

Name Description Units Default

CJO Zero bias junction capacitance F 0.0

EG Energy gap ev 1.11

FC Forward bias depletion capacitance coefficient 0.5

IS Saturation current A 1E-15

MJ Grading coefficient 0.5

N Forward emission coefficient 1.0

RS Series resistance Ω 0

TNOM Parameter measurement temperature 27

TT Diffusion transit time S 5e-6

TAU Minority carrier lifetime 1e-5

VJ Built-in potential V 1

XTI Saturation current temperature exponent 3

66
SIMetrix Simulator Reference Manual

4.17. Diode CMC

4.16.4 Basic Equations

The model is based on the paper “A Simple Diode Model with Reverse Recovery” by Peter Lauritzen and
Cliff Ma. (See references). The model’s governing equations are quite simple and are as follows:

id =
qe − qm
TT

dqm
dt

+
qm
TAU

− qe − qm
TT

= 0

qe = IS · TAU ·
(

exp

(
vd

N · Vt

)
− 1

)
In addition the model uses the standard SPICE equations for junction capacitance and temperature
dependence of IS.

4.16.5 References

Peter O. Lauritzen, Cliff L. Ma, A Simple Diode Model with Reverse Recovery, IEEE Transactions on
Power Electronics, Vol. 6, No 2, pp 188-191, April 1991.

4.17 Diode CMC

The "Diode CMC" model is available with the Elite versions of SIMetrix.

The "Diode CMC" model is derived from the NXP Juncap 2 model with a recovery model developed by
the University of Hiroshima with other developments by the Silicon Integration Initiative (Si2). It is used
predominantly for integrated circuit design.

One version of the model is currently available. This is version 2. This may be accessed using parameters
LEVEL=7 and VERSION=2

4.17.1 Netlist Entry

The device must have 2 terminals with the netlist format as shown below.

Dxxx anode cathode modelname instance_parameters

4.17.2 Diode Model Syntax

.model modelname D (LEVEL=7 VERSION=2 parameters)

4.18 Diode - Perfect

The Perfect Diode has zero off-state current and zero on-state resistance. Its forward voltage drop defaults
to zero but can be set to any value through a model parameter

67
SIMetrix Simulator Reference Manual

4.19. Inductor (Ideal)

4.18.1 Netlist Entry

The device must have 2 terminals with the netlist format as shown below.

Uxxx anode cathode modelname

4.18.2 Perfect Diode Model Syntax

.model modelname perfect_diode (parameters)

4.18.3 Perfect Diode Model Parameters

Name Description Units Default

VFWD Forward voltage drop V 0.0

TIMETOL Switching time tolerance s 1p

4.18.4 Basic Equations

Vd <= V FWD : Id = 0

Id > 0.0 : Vd = V FWD

Where:

Vd is the voltage across the diode.

Id is the current through the diode.

4.18.5 Notes

Although the device has perfect behaviour, it is sometimes necessary to introduce imperfections in order to
allow convergence. If convergence problems are encountered, adding some shunt resistance, shunt
capacitance or series resistance can help.

4.19 Inductor (Ideal)

4.19.1 Netlist Entry

Lxxxx n1 n2 value [IC=init_cond] [BRANCH=0|1]

n1 Node 1

n2 Node 2

value Value in henries

init_cond Initial current in inductor. Only effective if UIC option is specified on
.TRAN statement.

68
SIMetrix Simulator Reference Manual

4.20. Inductor (Saturable)

BRANCH set to 0 or 1. 1 is default value. This parameter determines the internal
formulation of the inductor and affects how the IC parameter is
implemented. When BRANCH=1, the inductor looks like a short circuit
during DC operating point and the IC parameter has no effect unless UIC
is specified for a transient analysis. If BRANCH=0, the inductor looks like
a current source during dc operating point with a magnitude equal to the
value of the IC parameter. BRANCH=0 makes it possible to specify
circuit startup conditions.

4.19.2 See Also

Mutual Inductor.

4.20 Inductor (Saturable)

4.20.1 Netlist Entry

Lxxxx n1 n2 modelname [N=num_turns] [LE=le] [AE=ae] [UE=ue]

n1 Node 1

n2 Node 2

modelname Model name referring to a .MODEL statement describing the core
characteristics. See details below.

num_turns Number of turns on winding

le Effective path length of core in metres. Default = PATH/100. PATH is
defined in .MODEL.

ae Effective area of core in metres2. Default = AREA/10000 where AREA is
define in .MODEL.

ue Effective permeability of core. Overrides model parameter of the same
name.

4.20.2 Model format - Jiles-Atherton model with hysteresis

.MODEL model_name CORE parameters

4.20.3 Model format - simple model without hysteresis

.MODEL model_name CORENH parameters

4.20.4 Jiles-Atherton Parameters

Name Description Units Default

PATH Effective path length cm 1

C Domain flexing parameter 0.2

K Domain anisotropy parameter amp.m-1 500

69
SIMetrix Simulator Reference Manual

4.20. Inductor (Saturable)

Name Description Units Default

MS Magnetisation saturation 1E6

GAP Air gap (centimetres) cm 0

GAPM Air gap (metres) m GAP/100

A Thermal energy parameter amp.m-1 1000

AREA Effective area cm2 0.1

UE Effective permeability. Overrides GAP and GAPM if
>0. See notes

AHMODE Anhysteric function selector (see notes) 0

4.20.5 Non-hysteresis Model Parameters

Name Description Units Default

PATH Effective path length cm 1

MS Magnetisation saturation 1E6

GAP Air gap (centimetres) cm 0

GAPM Air gap (metres) m GAP/100

A Thermal energy parameter amp.m-1 1000

AREA Effective area cm2 0.1

AHMODE Anhysteric function selector (see notes) 0

4.20.6 Notes on the Jiles-Atherton model

The Jiles-Atherton model is based on the theory developed by D.C. Jiles and D.L. Atherton in their 1986
paper “Theory of Ferromagnetic Hysteresis”. The model has been modified to correct non-physical
behaviour observed at the loop tips whereby the slope of the B-H curve reverses. This leads to
non-convergence in the simulator. The modification made is that proposed by Lederer et al. (See
references below). Full details of the SIMetrix implementation of this model including all the equations
are provided in a technical note. This can be found at the SIMetrix web site please visit Further
Documentation for details.

The AHMODE parameter selects the equation used for the anhysteric function, that is the non-linear curve
describing the saturating behaviour. When set to 0 the function is the same as that used by PSpice. When
set to 1 the function is the original equation proposed by Jiles and Atherton. See the
Jiles-Atherton-Model.pdf technical note for details.

If the UE parameters is specified either on the device line or in the model, an air gap value is calculated
and the parameters GAP and GAPM are ignored. See the Jiles-Atherton-Model.pdf technical note for the
formula used.

The parameter names and their default values for the Jiles-Atherton model are compatible with PSpice, but
the netlist entry is different.

70
SIMetrix Simulator Reference Manual

4.21. Inductor (Table lookup)

4.20.7 Notes on the non-hysteresis model

This is simply a reduced version of the Jiles-Atherton model with the hysteresis effects removed. The
anhysteric function and the air-gap model are the same as the Jiles-Atherton model.

4.20.8 Implementing Transformers

This model describes only a 2 terminal inductor. A transformer can be created using a combination of
controlled sources along with a single inductor. The SIMetrix schematic editor uses this method.

The schematic editor provides a means of creating transformers and this uses an arrangement of controlled
sources to fabricate a non-inductive transformer. Any inductor can be added to this arrangement to create
an inductive transformer. The method is simple and efficient. The following shows how a non-inductive
three winding transformer can be created from simple controlled sources:

F1 0 n1 E1 1
E1 W1A W1B n1 0 1
F2 0 n1 E2 1
E2 W2A W2B n1 0 1
F3 0 n1 E3 1
E3 W3A W3B n1 0 1

Connecting an inductor between n1 and 0 in the above provides the inductive behaviour. This is in fact
how the SIMetrix schematic editor creates non-linear transformers.

Note that you cannot use the mutual inductor device with the saturable inductor.

4.20.9 Plotting B-H curves

Both models can be enabled to output values for flux density in Tesla and magnetising force in A.m-1. To
do this, add the following line to the netlist:

.KEEP Lxxx#B Lxxx#H

Replace Lxxx with the reference for the inductor. (e.g. L23 etc.). You will find vectors with the names
Lxxx#B Lxxx#H available for plotting in the waveform viewer.

4.20.10 References

1. Theory of Ferromagnetic Hysteresis, DC.Jiles, D.L. Atherton, Journal of Magnetism and Magnetic
Materials, 1986 p48-60.

2. On the Parameter Identification and Application of the Jiles-Atherton Hysteresis Model for
Numerical Modelling of Measured Characteristics, D Lederer, H Igarashi, A Kost and T Honma,
IEEE Transactions on Magnetics, Vol. 35, No. 3, May 1999

4.21 Inductor (Table lookup)

4.21.1 Netlist Entry

Uxxxx n1 n2 model_name [IC=initial_condition] [USEIC=use_ic]

n1 node 1

n2 node 2

71
SIMetrix Simulator Reference Manual

4.21. Inductor (Table lookup)

initial_condition Initial condition in Amps. Only active if USEIC is non-zero

use_ic If non-zero, enable initial condition. This will set the current in the
inductor to the value of initial_condition during the DC operating point
analysis

4.21.2 Model syntax

.MODEL model_name TABLE_INDUCTOR parameters

Name Description Units Default

L Inductance 1m H

LTABLE Saturation table n/a

ITABLE Current table A n/a

TABLE_SIZE Number of elements in tables 2

RSERIES Series resistance Ω 0.0

RSHUNT Shunt resistance Ω 0.0 (sets to INF)

LMIN Minimum inductance H 0.0

SMOOTH Smoothing option (0-3) 0

Model Example

.MODEL TABLE_IND table_inductor L=1 USEIC=0 IC=0
+ RSERIES=0 RSHUNT=0 SMOOTH=2 TABLE_SIZE=7
+ ITABLE=[0, 8.3333, 16.666, 25, 33.3333, 41.666, 50]
+ LTABLE=[3.36e-07, 3.36e-07, 3.34e-07, 3.27e-07, 3.09e-07, 1.86e-07, 4.21e-08]

The above example has an inductance of 3.36e-07H at 0A falling to 4.21e-08 at 50A.

4.21.3 Boundary Inductance

The inductance for this device is defined by a lookup table over a specific range. However, the behaviour
at currents beyond that defined in the table must also be defined. We refer to the inductance as the
‘boundary inductance’. This follows a characteristic of the form:

A/(C + i2) + LMIN/L

Where A and C are chosen so that the absolute inductance and dL
di matches the table function at the final

point.

4.21.4 Smoothing Function

The SMOOTH parameter can be set to an integer between 1 and 4 to select a smoothing function. The
following table describes the alternative strategies available:

72
SIMetrix Simulator Reference Manual

4.22. IGBT

SMOOTH value Function

0 No smoothing function is selected. Inductor follows a PWL
(piece-wise-linear) characteristic

1 Local cubic. Fits a cubic polynomial between each pair of points such that
the gradient at each point is the average of the slope on either side of the
point. This is continuous in the first derivative but is not continuous in the
second derivative

2 Cubic spline with boundary conditions:
lower: dLdi = 0

upper: d
2L
di2 = 0

3 Cubic spline with boundary conditions:
lower: dLdi = 0

upper: dLdi = slope_of_final_segment

SMOOTH=2 and SMOOTH=3 select a cubic spline function. A cubic spline fits a series of cubic
polynomials through all points such that the function is continuous in the first and second derivatives.
Cubic splines generally require boundary conditions to be set; that is some condition to define the first and
last points. This is the only difference between SMOOTH=2 and SMOOTH=3. SMOOTH=2 usually gives
the best results but can, in some situations, result in a positive slope at the join with the boundary
inductance function. This cannot be matched to the boundary inductance and in these circumstances the
device will fail with the error message:

ERROR instance <ref>: Cannot fit spline to table using SMOOTH=2 strategy.
Try using SMOOTH=1 or SMOOTH=3

In this case SMOOTH=1 or SMOOTH=3 can be selected.

4.22 Insulated Gate Bipolar Transistor

4.22.1 Netlist Entry

Zxxxx collector gate emitter modelname [AREA=area] [AGD=agd] [KP=kp]
+ [TAU=tau] [WB=wb]

collector Collector node

gate Gate node

emitter Emitter node

area Device area in m2 (overrides model parameter of the same name)

agd Gate-drain overlap area in m2 (overrides model parameter of the same
name)

kp Transconductance (overrides model parameter of the same name)

tau Ambipolar recombination lifetime (overrides model parameter of the same
name)

wb Base width in metres (overrides model parameter of the same
name)

73
SIMetrix Simulator Reference Manual

4.23. Junction FET

4.22.2 Model syntax

.MODEL model_name NIGBT parameters

Name Description Units Default

AGD Gate-drain overlap area m2 5E-6

AREA Device active area m2 1E-5

BVF Breakdown voltage nonplanar junction factor 1.0

BVN Avalanche multiplication exponent 4.0

CGS Gate-source capacitance per unit area Fcm-2 1.24E-8

COXD Gate-drain overlap oxide capacitance per unit area Fcm-2 3.5E-8

JSNE Emitter electron saturation current density Acm-2 6.5E-13

KF Triode region MOSFET transconductance factor 1.0

KP MOSFET transconductance factor AV-2 0.38

MUN Electron mobility cm-2(Vs)-1 1.5E3

MUP Hole mobility cm-2(Vs)-1 4.5E2

NB Base doping concentration cm-3 2E14

TAU Ambipolar recombination lifetime s 7.1E-6

THETA Transverse field transconductance factor V-1 0.02

VT MOSFET channel threshold voltage V 4.7

VTD Gate-drain overlap depletion threshold V 1E-3

WB Metallurgical base width m 9.0E-5

4.22.3 Notes

The IGBT model is based on the model developed by Allen R. Hefner at the National Institute of
Standards and Technology. The parameter names, default values and units have been chosen to be
compatible with the PSpice implementation of the same model.

For more information, please refer to:

Modelling Buffer Layer IGBT’s for Circuit Simulation, Allen R. Hefner Jr, IEEE Transactions on Power
Electronics, Vol. 10, No. 2, March 1995

An Experimentally Verified IGBT Model Implemented in the Saber Circuit Simulator, Allen R. Hefner, Jr.,
Daniel M. Diebolt, IEE Transactions on Power Electronics, Vol. 9, No. 5, September 1994

4.23 Junction FET

4.23.1 Netlist Entry

Jxxxx drain gate source modelname [area] [OFF] [IC=vds,vgs]
+ [TEMP=local_temp] [M=mult] [DTEMP=dtemp]

drain Drain node

74
SIMetrix Simulator Reference Manual

4.23. Junction FET

gate Gate node

source Source node

modelname Name of model defined in a .model statement. Must begin with a letter but
can contain any character except whitespace and period ‘.’.

area Area multiplying factor. Area scales up the device. E.g. an area of 3 would
make the device behave like 3 transistors in parallel. Default is 1.

OFF Instructs simulator to calculate operating point analysis with device
initially off. This is used in latching circuits such as thyristors and
bistables to induce a particular state. See .OP for more details.

vds,vgs Initial conditions for drain-source and gate-source junctions respectively.
These only have an effect if the UIC parameter is specified on the .TRAN
statement.

local_temp Local temperature. Overrides specification in .OPTIONS or .TEMP
statements.

mult Device multiplier. Equivalent to putting mult devices in parallel.

dtemp Differential temperature. Similar to local_temp but is specified relative to
circuit temperature. If both TEMP and DTEMP are specified, TEMP takes
precedence.

4.23.2 N Channel JFET: Model Syntax

.model modelname NJF (parameters)

4.23.3 P Channel JFET: Model Syntax

.model modelname PJF (parameters)

4.23.4 JFET: Model Parameters

The symbols ‘×’ and ‘÷’ in the Area column means that parameter should be multiplied or divided by the
area factor respectively.

Name Description Units Default Area

VTO Threshold voltage V -2.0

VTOTC VTO temp coefficient V/°C 0

BETA Transconductance parameter A/V2 1e-4 ×
BETATCE BETA temperature coefficient % 0

LAMDA Channel length modulation
parameter

1/V 0

ALPHA Impact ionisation coefficient 0

VK Impact ionisation knee voltage V 0

RS Source ohmic resistance Ω 0 ÷
CGS Zero-bias G-S junction capacitance F 0 ÷
CGD Zero-bias G-D junction

capacitance
F 0 ÷

M Grading coefficient 1.0

75
SIMetrix Simulator Reference Manual

4.24. Laplace Transfer Function - Lumped Implementation

Name Description Units Default Area

PB Gate junction potential V 1

IS Gate junction saturation current A 1e-14 ×
N Gate junction emission coefficient 1

ISR Recombination current 0

NR ISR emission coefficient

XTI IS temperature coefficient 3

KF Flicker noise coefficient 0

AF Flicker noise exponent 1

FC Coefficient for forward bias depletion
capacitance

0.5

NLEV Select noise model 2

GDSNOI Channel noise coefficient. Use with
NLEV=3

1.0

TNOM, T_MEASURED Reference temperature; the temperature at
which the model parameters were
measured

°C 27

T_ABS If specified, defines the absolute model
temperature overriding the global
temperature defined using .TEMP

°C -

T_REL_GLOBAL Offsets global temperature defined using
.TEMP. Overridden by T_ABS

°C 0.0

4.23.5 Examples

Q2 is a U430 with a local temperature of 100°C.

4.24 Laplace Transfer Function - Lumped Implementation

4.24.1 Netlist entry

Axxxx input output model_name

4.24.2 Connection details

76
SIMetrix Simulator Reference Manual

4.24. Laplace Transfer Function - Lumped Implementation

Name Description Flow Default type Allowed types

in Input in v v, vd, i, id

out Output out v v, vd, i, id

4.24.3 Model format

.MODEL model_name s_xfer parameters

4.24.4 Model parameters

Name Description Type Default Limits Vector bounds

in_offset Input offset real 0 none n/a

gain Gain real 1 none n/a

laplace Laplace expression
(overrides num_coeff and
den_coeff)

string none none n/a

num_coeff Numerator polynomial
coefficient

real vector none none 1−∞

den_coeff Denominator polynomial
coefficient

real vector none none 1−∞

int_ic Integrator stage initial
conditions

real vector 0 none none

denormalized_freq Frequency
(radians/second) at which
to denormalize
coefficients

real 1 none n/a

4.24.5 Description

This device was formerly known as the S-domain Transfer Function Block. It implements an arbitrary
linear transfer function expressed in the frequency domain using a Laplace transform. This is one of two
models that can implement a Laplace transfer function. The other one is Laplace Transfer Function
Convolution Implementation

The operation and specification of the device is illustrated with the following examples.

4.24.6 Examples

77
SIMetrix Simulator Reference Manual

4.24. Laplace Transfer Function - Lumped Implementation

Example 1 - A single pole filter

Model for above device:

.model Laplace s_xfer laplace="1/(s+1)" denormalized_freq=1

This is a simple first order roll off with a 1 second time constant as shown below

78
SIMetrix Simulator Reference Manual

4.24. Laplace Transfer Function - Lumped Implementation

Example 2 - Single pole and zero

.model Laplace s_xfer
+ laplace="(1/s)/(1/s + 1/(0.1*s+1))"
+ denormalized_freq=1

The laplace expression has been entered how it might have been written down without any attempt to
simplify it. The above actually simplifies to (0.1*s+1)/(1.1*s+1).

Example 3 - Underdamped second order response

.model Laplace s_xfer
+ laplace="1/(s2+1.1*s+1)"
+ denormalized_freq=2k

The above expression is a second order response that is slightly underdamped. The following graph shows
the transient response.

79
SIMetrix Simulator Reference Manual

4.24. Laplace Transfer Function - Lumped Implementation

Example 4 - 5th order Chebyshev low-pass filter

The S-domain transfer block has a number of built in functions to implement standard filter response. Here
is an example. This is a 5th order chebyshev with -3dB at 100Hz and 0.5dB passband ripple.

.model Laplace s_xfer
+ laplace="chebyshevLP(5,100,0.5)"
+ denormalized_freq=1

and the response:

80
SIMetrix Simulator Reference Manual

4.24. Laplace Transfer Function - Lumped Implementation

4.24.7 The Laplace Expression

As seen in the above examples, the transfer function of the device is defined by the model parameter
LAPLACE. This is a text string and must be enclosed in double quotation marks. This may be any
arithmetic expression containing the following elements:

Operators: + - * / ˆ
where ˆ means raise to power. Only integral powers may be
specified.

Constants Any decimal number following normal rules. SPICE style engineering
suffixes are accepted.

S Variable This can be raised to a power with ‘ˆ’ or by simply placing a constant
directly after it (with no spaces). E.g. sˆ2 is the same as s2.

Filter response
functions

These are:
BesselLP(order, cut-off) Bessel low-pass

BesselHP(order, cut-off) Bessel high-pass

ButterworthLP(order, cut-off) Butterworth
low-pass

ButterworthHP(order, cut-off) Butterworth
high-pass

ChebyshevLP(order, cut-off,
passband_ripple)

Chebyshev
low-pass

ChebyshevHP(order, cut-off,
passband_ripple)

Chebyshev
high-pass

81
SIMetrix Simulator Reference Manual

4.24. Laplace Transfer Function - Lumped Implementation

Where:
order Integer specifying order of filter. There is no

maximum limit but in practice orders larger than
about 50 tend to give accuracy problems.

cut-off -3dB Frequency in Hertz

passband_ripple Chebyshev only. Passband ripple spec. in dB

4.24.8 Defining the Laplace Expression Using Coefficients

Instead of entering a Laplace expression as a string, this can also be entered as two arrays of numeric
coefficients for the numerator and denominator. In general this is less convenient than entering the
expression directly, but has the benefit that it supports the use of parameters. In this method, use the
NUM_COEFF and DEN_COEFF parameters instead of the LAPLACE expression.

The following simple example, demonstrates the method

.param f0=10

.param w0 = {2*3.14159265*f0}

.model laplace s_xfer num_coeff = [1] den_coeff = [{1/w0},1]

4.24.9 Other Model Parameters

• DENORMALISED_FREQ is a frequency scaling factor.

• INT_IC specifies the initial conditions for the device. This is an array of maximum size equal to the
order of the denominator. The right-most value is the zero’th order initial condition.

• NUM_COEFF and DEN_COEFF - see Defining the Laplace Expression Using Coefficients.

• GAIN and IN_OFFSET are the DC gain and input offset respectively.

4.24.10 Limitations

SIMetrix expands the expression you enter to create a quotient of two polynomials. If the constant terms of
both numerator and denominator are both zero, both are divided by S. That process is repeated until one or
both of the polynomials has a non-zero constant term.

The result of this process must satisfy the following:

• The order the denominator must be greater than or equal to that of the numerator.

• The constant term of the denominator may not be zero.

4.24.11 Implementation

This device implements a Laplace transform using a network of integrators. The diagram below shows the
configuration used for a third order network.

82
SIMetrix Simulator Reference Manual

4.25. Laplace Transfer Function - Convolution Implementation

This method can implement a quotient of polynomials in the s variable and any expression that can be
reduced to a quotient of polynomials. For such expressions it is fast and efficient.

This method cannot implement expressions containing arbitrary functions such as square-root or
exponentials. Such Laplace expressions must be implemented using the convolution method.

4.25 Laplace Transfer Function - Convolution Implementation

4.25.1 Netlist Entry

Uxxxx p n cp cn modelname [M=m IC=ic VOLTAGE_MODE=vm]

p Positive output

n Negative output

cp Positive control input

cn Negative control input

modelname Name of model defined in a .MODEL statement. Must begin with a letter
but can contain any character except whitespace and period ‘.’.

ic Initial condition.

If specified, the output will be fixed at this value when the DC operating
point is being calculated. If not specified, the device will behave like a
fixed gain block with a gain set by the Laplace transfer function with
s=0.

4.25.2 Model Syntax

.model modelname LAPLACE (parameters)

83
SIMetrix Simulator Reference Manual

4.25. Laplace Transfer Function - Convolution Implementation

4.25.3 Model Parameters

Name Description Units Default

EXPR Laplace transfer function n/a

DELAY Additional delay s 0

CONV_N log2(convolution size) 15

DCGAIN DC gain of block Note 1

IMPULSE_METHOD Method to extract impulse response
0: Use all methods
1: Analytical only
2: Inverse FFT
3: Stehfest

0

IMPULSE_TEST_TOL Impulse response test
tolerance

0.1

IMPULSE_TEST_FMAX Maximum test frequency as multiple
of 1/TSTOP

256

IMPULSE_TEST_FMIN Minimum test frequency as multiple
of 1/TSTOP

8

IMPULSE_IFFT_N log2(Inverse FFT size) 20

IMPULSE_IFFT_TEST_METHOD Test method for inverse FFT.
0: Spot frequency
1: Zero tail

1

TRUNC_TEST Enable truncation error test 1

TRUNC_RELTOL Truncation error test relative
tolerance

0.05

TRUNC_ABSTOL Truncation error test absolute
tolerance

1e-6

IMPULSE_ENABLE_CACHE Enable impulse response
cache

1

PSPICE_COMPAT Enable PSpice compatibility 0

TABLE_ZERO_FREQ F=0 frequency in table Hz Note 2

TABLE_ZERO_MAG Magnitude=0 in table 1e-30

FREQUENCY_SCALE Substitutes s with
s/frequency_scale

1

IMPULSE_ENABLE_DIAGNOSTICS Enable impulse response
diagnostics

0

Note 1 Gain of block defaults to the value of the Laplace transfer function with s=0. If
the transfer function cannot be evaluated at s=0, the expression is evaluated
with s=1e-11. If that also fails DCGAIN is set to zero

Note 2 If PSPICE_COMPAT=0 1e-30 otherwise 1e-305

84
SIMetrix Simulator Reference Manual

4.25. Laplace Transfer Function - Convolution Implementation

4.25.4 Laplace transfer function

The Laplace expression defines the behaviour of the device in the frequency domain. For example
‘1/(s+1)’, defines a simple single pole low-pass filter. The expression may contain arithmetic operators
and a number of functions as described in the following sections. Be aware that not any expression is
physically realisable; for example ‘exp(s)’ defines a negative delay, that is a device whose output
responds to an input in the future.

Operators

+ - * / ^

where ^ means raise to power. For lumped network implementation, the power must be an integer.
Non-integral powers may be entered for convolution implementation.

Constants

Any decimal number following normal rules. SPICE style engineering suffixes are accepted.

s Variable

This can be raised to a power using ^, for example s^2. If the power is an integer between 0 and 9 the ^

may be omitted. For example: s2 is the same as s^2.

Functions

The following functions may be used.

Function Syntax Description

sqrt(x)
√
x

exp(x) ex

ln(x) loge(x)

log10(x) log10(x)

sin(x) sin(x)

cos(x) cos(x)

tan(x) tan(x)

acos(x) cos−1(x)

asin(x) sin−1(x)

atan(x) tan−1(x)

sinh(x) sinh(x)

cosh(x) cosh(x)

tanh(x) tanh(x)

asinh(x) sinh−1(x)

acosh(x) cosh−1(x)

atanh(x) tanh−1(x)

atan2(x,y) tan−1(yx)

pow(x,y) xy

85
SIMetrix Simulator Reference Manual

4.25. Laplace Transfer Function - Convolution Implementation

Filter response functions

Filter response functions may be used in both lumped network implementation and convolution
implementation.

These are described in the following table:

Function Syntax Filter Response

BesselLP(order, cut-off) Bessel low-pass

BesselHP(order, cut-off) Bessel high-pass

ButterworthLP(order, cut-off) Butterworth low-pass

ButterworthHP(order, cut-off) Butterworth high-pass

ChebyshevLP(order, cut-off, passband_ripple) Chebyshev low-pass

ChebyshevHP(order, cut-off, passband_ripple) Chebyshev high-pass

Where:

order Integer specifying order of filter. There is no maximum limit but in
practice orders larger than about 50 tend to give accuracy
problems.

cut-off -3dB Frequency in Hertz.

passband_ripple Chebyshev only. Passband ripple spec. in dB.

Lookup tables

The frequency response of a system may be defined in tabular form using lookup tables. The lookup table
consists of a sequence of values arranged in triplets. Each triplet is in the form frequency, value1, value2
where value1 and value2 define the magnitude and phase in various ways as described below.

There are five variants of the lookup table as described below:

Function Name value1 value2

Table dB phase in degrees

Table_M magnitude phase in degrees

Table_R dB phase in radians

Table_MR magnitude phase in radians

Table_RI real part imaginary part

Example
Table_M(0.01,1,30, 1,1,30, 10,0.1,30, 100,0.01,-30)

The above defines a response with a gain of 1 and a phase shift of 30 degrees from 0.01Hz to 1Hz. From
1Hz to 10Hz the gain falls from 1 to 0.1 with the phase shift remaining at 30 degrees. From 10Hz to
100Hz the gain falls from 0.1 to 0.01 and the phase changes from 30 to -30 degrees.

In real life it is not possible to implement a characteristic with the above behaviour as it is non-causal.
However, it can be implemented if a suitable delay is added to the characteristic. The delay may be added

86
SIMetrix Simulator Reference Manual

4.25. Laplace Transfer Function - Convolution Implementation

using the DELAY parameter. Alternatively it may be added to the Laplace expression using
exp(−delay.s). E.g:

Table_M(0.01,1,30, 1,1,30, 10,0.1,30, 100,0.01,-30) * exp(-s*2)

The above adds a 2 second delay.

For ease of reading, each triplet in the table may be placed on a separate line by prefixing each line with a
‘+’ character. E.g.

Table_M(
+ 0.01, 1, 30,
+ 1, 1, 30,
+ 10, 0.1, 30,
+ 100, 0.01, -30)

Interpolation Between defined frequency points, the Laplace transfer function finds the magnitude and
phase using interpolation. The interpolation is performed logarithmically on the magnitude data. Values
outside the table frequency range are defined by their respective end points.

If the table contains zero frequency terms or zero magnitude terms, the values are replaced with the values
of parameters TABLE_ZERO_FREQ and TABLE_ZERO_MAG parameters respectively. This is because
the interpolation is performed logarithmically and this requires all values to be > 0.

For the above example the magnitude and phase are shown below:

Parameters

Parameters (defined with .PARAM) may be used in Laplace expressions.

87
SIMetrix Simulator Reference Manual

4.25. Laplace Transfer Function - Convolution Implementation

4.25.5 Implementation

The Laplace transfer function is implemented using a convolution method.

In the frequency domain, a linear system may be represented by:

V out(s) = V in(s).f(s)

where f(s) is the transfer function.

In the time domain the same system may be represented by:

V out(t) = V in(t) ∗ f(t)

Where f(t) is the impulse response of f(s) and ∗ is the convolution operator.

This method is challenging to implement as simple convolution applied to simulation data in its raw form
is an O(n2) algorithm. This means that the number of computations required at each step is proportional
to the square of the number of steps. In practice this becomes unacceptably slow when there are more than
about 10000 time steps.

SIMetrix overcomes this performance limitation by using an FFT based fast convolution method with a
computation speed of O(n log 2n). Although dramatically faster, this algorithm requires data to be
presented to it at fixed-interval steps which has the effect of placing an upper frequency limit. The actual
upper frequency limit can be arbitrarily increased by increasing the number of steps (the value of n) at the
expense of speed and the memory consumed. In practice the default settings work well in most
applications and give good performance and accuracy.

To perform the convolution, the simulator must also extract the impulse response of the Laplace transform.
SIMetrix has three methods to do this:

Analytical Matches the Laplace transform to known analytical solutions.
For example 1√

(s) has the impulse response of 1
2.π
√
t
. SIMetrix

will automatically detect this and other known Laplace
transforms.

Inverse FFT Calculates the inverse Fourier transform of the Laplace
expression. This is a general purpose method that can be
applied to a wide-range of Laplace transforms. However, it has
the condition that the impulse response must decay to zero
during the time interval.

Stehfest method A method to calculate the inverse Laplace transform.
Sometimes this method works for slowly decaying transforms
that fail with the inverse FFT method.

4.25.6 Impulse Response

Problems with Impulse Response Extraction

For the convolution method an impulse response of the Laplace transfer function must be extracted. As
mentioned above, three methods are attempted. The inverse FFT method and Stehfest methods are
approximate in nature and for this reason, the result from each method is tested. If the test fails the impulse
response is rejected and another method is attempted. If all methods fail the simulation will abort.

Transfer functions that decay slowly are likely to fail the inverse FFT method as this method requires that
the impulse response decay to zero or nearly to zero. If the Stehfest method also fails, the problem can
sometimes be resolved by increasing the inverse FFT size. This is controlled by the IMPULSE_IFFT_N

88
SIMetrix Simulator Reference Manual

4.25. Laplace Transfer Function - Convolution Implementation

parameter. This increases the duration over which the inverse FFT is evaluated so providing a longer time
to decay.

In many situations the impulse response extraction fails because the transfer function is non-causal. This
means that it has a response in negative time. Non-causal transfer functions can be made causal by adding
a delay.

Impulse Response Testing

If the inverse FFT method or Stehfest methods are used to extract the impulse response, the result is tested
before allowing it to be used for the simulation.

The Stehfest method is tested by performing a spot frequency check. That is the impulse response is used
to measure the gain of a sequence of sine waves in the time domain to check that the magnitudes match to
that predicted in the frequency domain. The parameters IMPULSE_TEST_FMAX and
IMPULSE_TEST_FMIN determine the range of frequencies used.

The inverse FFT method may be tested by one of two methods determined by the
IMPULSE_IFFT_TEST_METHOD parameter. If set to 0, the spot frequency method as described above
will be used. If set to 1, the default, the impulse response is tested by measuring its decay to zero. The
inverse FFT method is accurate if the response decays to zero and this is used to test the result.

The tolerance required for the test is set by the IMPULSE_TEST_TOL parameter.

Impulse Response Cache

The impulse response is cached to speed up subsequent simulations with the same response. The cache is
located here:

C:\Users\login-name\AppData\Roaming\SIMetrix Technologies\SIMetrixvvv\LaplaceCache

where login-name is the name used to log in to your system and vvv is the version, e.g. 830 for version 8.3.
This can be deleted at any time. The cache is size limited to 250Mbytes by default. This can be changed
using the option variable LaplaceCacheSizeMBytes. Type ‘Set LaplaceCacheSizeMBytes=nnn’ at the
command line to set a new value.

The cache may be disabled by setting the IMPULSE_ENABLE_CACHE parameter to 0.

Impulse Response Analytical Extraction

The impulse response analytical extraction attempts to match the transfer function to one of the following
patterns. The parameters a, b, c etc represent constant values.

Laplace expression Impulse response

a a.δ(t)

a/(b.s) a/b

a/
√
b.s a/

√
2.π.b.t

a/(b.s+ c) a/b.e−c/b.t

a/
√
b.s+ c a ∗ e−c.t/b/

√
b.π.t√

a/(b.s+ c)
√
a ∗ e−c.t/b/

√
b.π.t

a

b.s2 + c.s+ d

−(e−t/2(
√
p2−4q+p) − et/2(

√
p2−4q−p)√

p2 − 4q
p = c/b and q = d/b

89
SIMetrix Simulator Reference Manual

4.25. Laplace Transfer Function - Convolution Implementation

Laplace expression Impulse response

a.eb.s a.δ(b+ t)

a/(b.sc)
a.tc−1

b.Γ(c)
a.s2 + b.s+ c

d.s2 + g.s+ f
[−(e

t.arg2−et.arg3)∗(−p.u+2q+u2−2v)
2arg1 − (u−p)(et.arg2+et.arg3)

2 + δ(t)]ad

p = b/a
q = c/a
u = g/d
v = f/d
arg1 =

√
u2 − 4v

arg2 = −arg1/2− u/2
arg3 = arg1/2− u/2

a.s+ b

c.s2 + d.s+ f

a

c
.
(2q − u)(arg2− arg3) +

√
u2 − 4v(arg3 + arg2)

2
√
u2 − 4v

q = b/a
u = d/c
v = f/c

arg2 = et.(
√
u2−4v/2−u/2)

arg3 = et.(−
√
u2−4v/2−u/2)

a.s+ b

c.s+ d

e−d.t/c(b.c− a.d)

c2
+
a.δ(t)

c

√
a.s+ b√
c.s+ d

(α.(I1(α.t)− I0(α.t)) + δ(t)).e−β.t.Y

Y =
√
a/c

α = (d/c− b/a)/2
β = (d/c+ b/a)/2
I0 and I1 are Bessel functions

The analytic matching algorithm will attempt to match partial expressions as well as the whole expression
if they are combined by addition, subtraction or multiplication. For example:

(1/(s+ 1)) ∗ exp(−s)

will be matched to the product of 1/(s+ 1) and exp(−s). Respectively these have impulse responses of
e−t and δ(1 + t) and those two impulse responses will be convolved to yield the final result. Note that this
only succeeds if all partial expressions can be matched analytically.

To exploit this method, ensure that the expression is entered in a manner that keeps each partial expression
distinct. For example, the following would be matched correctly:

1/(s+ 1) ∗ 1/(s+ 2)

as this would be seen as the two partial expressions 1/(s+ 1) and 1/(s+ 2) each of which can be resolved
analytically. The final result would be obtained by convolving the two impulse responses.

However the following mathematically identical expression would not be matched:

1/((s+ 1) ∗ (s+ 2))

The analysis algorithm does not attempt to decompose denominator products so this will not be recognised
analytically. The above would be extracted using inverse FFT which would usually be successful but

90
SIMetrix Simulator Reference Manual

4.26. Lossy Transmission Line

might not be if the run time is considerably shorter than the time constant.

4.25.7 Run Time Error Control

During the simulation run the time step is controlled using a truncation error method. The tolerances used
for this error control are set using the TRUNC_RELTOL and TRUNC_ABSTOL parameters. The
truncation error test may be disabled altogether by setting the TRUNC_TEST parameter to zero.

4.25.8 PSpice LAPLACE and FREQ compatibility

SIMetrix is compatible with PSpice Laplace transfer functions at the netlist level entered in one of these
forms

Exxx n1 n2 LAPLACE { input_expression } { laplace_expression }
Gxxx n1 n2 LAPLACE { input_expression } { laplace_expression }

Exxx n1 n2 FREQ {input_expression} [keyword1] [keyword2] table_values DELAY=delay
Gxxx n1 n2 FREQ {input_expression} [keyword1] [keyword2] table_values DELAY=delay

Where:

input_expression Expression to define input signal. E.g. V(vin)

laplace_expression Laplace transfer function

keyword1 and keyword2 RAD, MAG, DB, DEG or R_I

table_values table look up entries in groups of three

delay additional delay

SIMetrix will implement the PSpice expression in the best way possible. If the Laplace expression can be
expressed as a quotient of polynomials, the lumped model (see Laplace Transfer Function - Lumped
Implementation) will be used instead of the convolution model as long as it does not contain any
parameters.

4.26 Lossy Transmission Line

4.26.1 SPICE3 LTRA Lossy Transmission Line

The built-in lossy transmission line model is now obsolete and should not be used in new designs. It has
been superseded by the subcircuit-based RLGC model. See below.

4.26.2 Subcircuit-based RLGC Model

A subcircuit-based lossy transmission line model is also provided in the model library and accessible in
the schematic editor from the menu system. The sub-circuit model uses the Laplace Transfer Function
Convolution Implementation device as its base. The sub-circuit model is faster, more accurate and also
supports both shunt and series losses. The subcircuit model may be entered using

Xxxx p1 n1 p2 n2 LOSSY_LINE params:
+ C=cap-per-unit-length
+ L=ind-per-unit-length
+ G=shunt-conductance-per-unit-length
+ R=series-r-per-unit-length LENGTH=length

91
SIMetrix Simulator Reference Manual

4.27. MOSFET

4.27 MOSFET

Note

Level 1, 2, 3 and 17 MOSFETs are described in this section. For other devices:

BSIM3

BSIM4

HiSim HV

PSP

MOS9, MOS11 and other NXP devices see NXP Compact Models

4.27.1 Netlist Entry

Mxxxx drain gate source bulk modelname [L=length] [W=width]
+ [AD=drain_area] [AS=source_area]
+ [PD=drain_perimeter] [PS=source_perimeter]
+ [NRD=drain_squares] [NRS=source_squares]
+ [NRB=bulk_squares]
+ [OFF] [IC=vds,vgs,vbs] [TEMP=local_temp] [M=area]

drain Drain node

gate Gate node

source Source node

bulk Bulk (substrate) node

modelname Name of model. Must begin with a letter but can contain any character
except whitespace and period ‘.’

(The following 8 parameters are not supported by the level 17 MOSFET model)

length Channel length (metres).

width Channel width (metres).

drain_area Drain area (m2).

source_area Source area (m2).

drain_perimeter Drain perimeter (metres).

source_perimeter Source perimeter (metres).

drain_squares Equivalent number of squares for drain resistance

source_squares Equivalent number of squares for source resistance

gate_squares Equivalent number of squares for gate resistance. Level=3 only

bulk_squares Equivalent number of squares for gate resistance. Level=3 only

OFF Instructs simulator to calculate operating point analysis with device
initially off. This is used in latching circuits such as thyristors and
bistables to induce a particular state. See .OP for more details.

vds, vgs, vbs Initial condition voltages for drain-source gate-source and
bulk(=substrate)-source respectively. These only have an effect if the UIC
parameter is specified on the .TRAN statement.

local_temp Local temperature. Overrides specification in .OPTIONS or .TEMP
statements.

92
SIMetrix Simulator Reference Manual

4.27. MOSFET

dtemp Differential temperature. Similar to local_temp but is specified relative to
circuit temperature. If both TEMP and DTEMP are specified, TEMP takes
precedence. Currently implemented only for LEVEL 1,2 and 3.

Notes SIMetrix supports four types of MOSFET model specified in the model definition.
These are referred to as levels 1, 2, 3 and 7. Levels 1,2, and 3 are the same as the
SPICE2 and SPICE3 equivalents. Level 17 is proprietary to SIMetrix. For further
information see Level 17 MOSFET parameters below.

4.27.2 NMOS Model Syntax

.model modelname NMOS (level=level_number parameters)

4.27.3 PMOS Model Syntax

.model modelname PMOS (level=level_number parameters)

4.27.4 MOS Levels 1, 2 and 3: Model Parameters

Name Description Units Default Levels

VTO or VT0 Threshold voltage V 0.0 all

KP Transconductance parameter A/V2 2.0e-5 all

GAMMA Bulk threshold parameter V 0.0 all

PHI Surface potential V 0.6 all

LAMBDA Channel length modulation 1/V 0.0 all

RG Gate ohmic resistance Ω 0.0 1,3

RD Drain ohmic resistance Ω 0.0 all

RS Source ohmic resistance Ω 0.0 all

RB Bulk ohmic resistance Ω 0.0 3

RDS Drain-source shunt resistance Ω ∞ 3

CBD B-D junction capacitance F 0.0 all

CBS B-S junction capacitance F 0.0 all

IS Bulk junction sat. current A 1.0e-14 all

PB Bulk junction potential V 0.8 all

CGSO Gate-source overlap capacitance F/m 0.0 all

CGDO Gate-drain overlap capacitance F/m 0.0 all

CGBO Gate-bulk overlap capacitance F/m 0.0 all

RSH Drain and source diffusion
resistance

Ω/sq. 0.0 all

CJ Zero bias bulk junction bottom
capacitance/sq-metre of junction
area

F/m2 See note all

MJ Bulk junction bottom grading
coefficient

0.5 all

93
SIMetrix Simulator Reference Manual

4.27. MOSFET

Name Description Units Default Levels

CJSW Zero bias bulk junction sidewall
capacitance

F/m 0.0 all

MJSW Bulk junction sidewall grading
coefficient

0.5 1

MJSW as above 0.33 2,3

JS Bulk junction saturation current/sq-metre
of junction area

A/m2 0.0 all

JSSW Bulk p-n saturation sidewall
current/length

A/m 0.0 3

TT Bulk p-n transit time secs 0.0 3

TOX Oxide thickness metre 1e-7 all

NSUB Substrate doping 1/cm2 0.0 all

NSS Surface state density 1/cm2 0.0 all

NFS Fast surface state density 1/cm2 0.0 2,3

TPG Type of gate material:

+1 opposite. to substrate

-1 same as substrate

0 Al gate

all

XJ Metallurgical junction depth metre 0.0 2,3

LD Lateral diffusion metre 0.0 all

UO Surface mobility cm2/Vs 600 all

UCRIT Critical field for mobility V/cm 0.0 2

UEXP Critical field exponent in mobility
degradation

0.0 2

UTRA Transverse field coefficient
(mobility)

0.0 1,3

VMAX Maximum drift velocity of carriers m/s 0.0 2,3

NEFF Total channel charge (fixed and mobile)
coefficient

1.0 2

FC Forward bias depletion capacitance
coefficient

0.5 all

TNOM, T_MEASURED Reference temperature; the temperature at
which the model parameters were
measured

°C 27 all

T_ABS If specified, defines the absolute model
temperature overriding the global
temperature defined using .TEMP

°C .TEMP all

T_REL_GLOBAL Offsets global temperature defined using
.TEMP. Overridden by T_ABS

°C 0.0 all

KF Flicker noise coefficient 0.0 all

AF Flicker noise exponent 1.0 all

DELTA Width effect on threshold voltage 0.0 2,3

THETA Mobility modulation 1/V 0.0 3

94
SIMetrix Simulator Reference Manual

4.27. MOSFET

Name Description Units Default Levels

ETA Static feedback 0.0 3

KAPPA Saturation field factor 0.2 3

W Width metre DEFW all

L Length metre DEFL all

NLEV Noise model 2 all

4.27.5 CJ Default

If not specified CJ defaults to √
εsq × NSUB× 1e6/(2× PB)

where

εs = 1.03594314e-10 (permittivity of silicon)

q = 1.6021918e-19 (electronic charge)

NSUB, PB model parameters

4.27.6 Gate Charge Model, Levels 1, 2 and 3

Two gate charge models are available for MOS Levels 1, 2 and 3 selectable by the .OPTIONS setting
SPICEMOSCHARGEMODEL:

.OPTIONS SPICEMOSCHARGEMODEL=0|1

The option value is defined as follows:

0 Meyer capacitance model. This is the original model used in SPICE2 and SPICE3
and derivatives. The gate charge is defined by its capacitance and does not conserve
charge

1 Yang-Chatterjee charge model. This is the model used by PSpice. It is charge based
and as such does correctly conserve charge

MOS level 1-3 models are predominantly used as part of many manufacturer-designed power MOS and
IGBT subcircuit models. In most cases the choice of gate charge model is unimportant. However, for a
few models, the results vary significantly with the choice of model used. Most models are designed for
PSpice and so the safest choice is the Yang-Chatterjee charge model
(.OPTIONS SPICEMOSCHARGEMODEL=1). However, SIMetrix version 8.0 and earlier do not support this
model so for compatibility with earlier versions the Meyer capacitance model is the default.

The setting .OPTIONS SPICECOMPATIBILITY=2 automatically enables the Yang-Chatterjee charge model as
the default.

4.27.7 Notes for levels 1, 2 and 3:

The three levels 1 to 3 are as follows:

LEVEL 1 Shichman-Hodges model. The simplest and is similar to the JFET
model

95
SIMetrix Simulator Reference Manual

4.27. MOSFET

LEVEL 2 A complex model which models the device according to an understanding
of the device physics

LEVEL 3 Simpler than level 2. Uses a semi-empirical approach i.e. the device
equations are partly based on observed effects rather than the theory
governing its operation

The L and W parameters perform the same function as the L and W parameters on the device line. If
omitted altogether they are set to the option values (set with .OPTIONS statement) DEFL and DEFW
respectively. These values in turn default to 100 microns.

The above models differ from all other SIMetrix (and SPICE) models in that they contain many geometry
relative parameters. The geometry of the device (length, width etc.) is entered on a per component basis
and various electrical characteristics are calculated from parameters which are scaled according to those
dimensions. This is approach is very much geared towards integrated circuit simulation and is
inconvenient for discrete devices. If you are modelling a particular device by hand we recommend you use
the level 17 model which is designed for discrete vertical devices.

4.27.8 MOS Level 17: Model Parameters

Name Description Units Default

VTO or VT0 Threshold voltage V 0.0

KP Transconductance parameter A/V2 2.0e-5

GAMMA Bulk threshold parameter
√

V 0.0

PHI Surface potential V 0.6

LAMBDA Channel length modulation 1/V 0.0

RD Drain ohmic resistance Ω 0.0

RS Source ohmic resistance Ω 0.0

CBD B-D junction capacitance F 0.0

CBS B-S junction capacitance F 0.0

IS Bulk junction sat. current A 1.0e-14

PB Bulk junction potential V 0.8

CGSO Gate-source overlap capacitance F 0.0

CGBO Gate-bulk overlap capacitance F 0.0

CJ Zero bias bulk junction bottom capacitance F 0.0

MJ Bulk junction bottom grading coefficient 0.5

CJSW Zero bias bulk junction sidewall capacitance F 0.0

MJSW Bulk junction sidewall grading coefficient 0.5

FC Forward bias depletion capacitance coefficient 0.5

TNOM Parameter measurement temperature °C 27

KF Flicker noise coefficient 0.0

AF Flicker noise exponent 1.0

CGDMAX Maximum value of gate-drain capacitance F 0.0

CGDMIN Minimum value of gate-drain capacitance F 0.0

XG1CGD cgd max-min crossover gradient 1.0

96
SIMetrix Simulator Reference Manual

4.27. MOSFET

Name Description Units Default

XG2CGD cgd max-min crossover gradient 1.0

VTCGD cgd max-min crossover threshold voltage V 0.0

TC1RD First order temperature coefficient of RD 1/°C 0.0

TC2RD Second order temperature coefficient of RD 1/°C2 0.0

4.27.9 Notes for level 17

In SIMetrix version 5.2 and earlier, this model used a level parameter value of 7 instead of the current 17.
The number was changed so that a PSpice compatible BSIM3 model (level=7) could be offered. In order
to retain backward compatibility, any level 7 model containing the parameters cgdmax, cgdmin, xg1cgd,
xg2cgd or vtcgd will automatically be switched to level=17.

The level 17 MOSFET was developed to model discrete vertical MOS transistors rather than the integrated
lateral devices that levels 1 to 3 are aimed at. Level 17 is based on level 1 but has the following important
additions and changes:

• New parameters to model gate-drain capacitance

• 2 new parameters to model rdson variation with temperature.

• All parameters are absolute rather than geometry relative. (e.g. capacitance is specified in farads not
farads/meter)

All MOSFET models supplied with SIMetrix are level 17 types. Many models supplied by manufacturers
are subcircuits made up from a level 1, 2 or 3 device with additional circuitry to correctly model the
gate-drain capacitance. While the latter approach can be reasonably accurate it tends to be slow because of
its complexity.

Gate-drain capacitance equation:

Cgd =

(
0.5− 1

π
tan−1 ((VTCGD− v)− XG1CGD)

)
CGDMIN

+

(
0.5− 1

π
tan−1 ((VTCGD− v) XG2CGD)

)
CGDMAX

where v is the gate-drain voltage. This is an empirical formula devised to fit measured characteristics.
Despite this it has been found to follow actual measured capacitance to remarkable accuracy.

To model gate-drain capacitance quickly and to acceptable accuracy set the five Cgd parameters as follows:

1. Set CGDMIN to minimum possible value of Cgd i.e. when device is off and drain voltage at
maximum.

2. Set CGDMAX to maximum value of Cgd i.e. when device is on with drain-source voltage low and
gate-source voltage high. If this value is not known use twice the value of Cgd for Vgd = 0.

3. Set XG2CGD to 0.5, XG1CGD to 0.1 and leave VTCGD at default of 0.

Although the parasitic reverse diode is modelled, it is connected inside the terminal resistances, RD and
RS which does not represent real devices very well. Further, parameters such as transit time (TT) which
model the reverse recovery characteristics of the parasitic diode are not included. For this reason it is
recommended that the reverse diode is modelled as an external component. Models supplied with
SIMetrix are subcircuits which include this external diode.

97
SIMetrix Simulator Reference Manual

4.28. BSIM3 MOSFETs

4.28 BSIM3 MOSFETs

4.28.1 Notes

The BSIM3 model is available with Pro and Elite versions of SIMetrix. Two versions are supplied namely
3.24 and 3.3.

BSIM3 models can be accessed using one of four values for the LEVEL parameter:

LEVEL=7 specifies a PSpice compatible model

LEVEL=8 specifies the standard Berkeley BSIM3 model.

LEVEL=49 specifies the Hspice® implementation using the Hspice® junction capacitance model.

LEVEL=53 is also a Hspice® version but uses the standard Berkeley junction cap model.

The following PSpice parameters are supported when using level 7: TT, L, W, RG, RD, RS, RB, RDS,
JSSW

The following Hspice® parameters are supported when using level 49/53: CJGATE, HDIF, LDIF, WMLT,
XL, XW, IS, N, NDS, VNDS, PHP, LMLT, CTA, CTP, PTA, PTP, TREF, RD, RS, RDC, RSC, CBD, CBS,
FC, TT, LD, WD, EG, GAP1, GAP2, XLREF, XWREF, ACM, CALCACM, TLEV, TLEVC

The Hspice® noise model is also supported for NLEV=0,1 and 2.

The ‘M’ instance parameter has also been implemented with all variants. This specifies the number of
equivalent parallel devices.

Additional temperature parameters: All variants support the TEMP and DTEMP instance parameters.
TEMP specifies absolute temperature (Celsius) while DTEMP specifies the temperature relative to the
circuit global temperature.

All variants support the model parameters T_MEASURED (equivalent to TNOM), T_ABS (as TEMP
instance parameter) and T_REL_GLOBAL (as DTEMP instance parameter)

4.28.2 Version Selector

The VERSION parameter can be specified to select which version is used. As detailed above, SIMetrix
supports three different BSIM3 versions although 8 versions have been released by Berkeley. The
following table shows which version will actually be used according to the VERSION parameter value.

VERSION parameter Use BSIM3 Version

3.2 3.24

3.21 3.24

3.22 3.24

3.23 3.24

3.24 3.24

3.3 3.3

not specified 3.3

Note that a second decimal point will be ignored so 3.2.4 is the same as 3.24. If the version parameter is
set to a value not listed above, SIMetrix will raise an error condition. This can be overridden by setting
.OPTIONS AnyVersion.

98
SIMetrix Simulator Reference Manual

4.28. BSIM3 MOSFETs

4.28.3 Model Parameters

The parameters describing BSIM3 are documented in the original Berkeley manual. See below. The
following table lists parameters that are non-standard.

Name Description Units Default

TNOM, T_MEASURED Reference temperature; the temperature at
which the model parameters were
measured

°C 27

T_ABS If specified, defines the absolute model
temperature overriding the global temperature
defined using .TEMP

°C .TEMP

T_REL_GLOBAL Offsets global temperature defined using
.TEMP. Overridden by T_ABS

°C 0.0

VFBFLAG Capacitor model selector used by Hspice. An
error will be raised if this parameter and the
CAPMOD parameter are set to values not
supported by SIMetrix

0

BINFLAG Parameter used by Hspice. An error will be
raised if this parameter is set to a value other
than zero

0

LREF Ignored

WREF Ignored

SFVTFLAG Ignored

TT Level = 7 only. Reverse diode transit
time

S 0.0

L Level = 7 only. Channel length. Overridden by
instance parameter

m DEFL option

W Level = 7 only. Channel width. Overridden by
instance parameter

m DEFW option

RG Level = 7 only. Gate resistance W 0.0

RD Level = 7 only. Drain resistance W 0.0

RS Level = 7 only. Source resistance W 0.0

RB Level = 7 only. Bulk resistance W 0.0

RDS Level = 7 only. Drain-source leakage
resistance

W ∞

JSSW Level = 7 only. Alias for JSW. F/m 0.0

4.28.4 Further Documentation

Original Berkeley documentation may be found at our web site. Please visit Further Documentation for
details.

4.28.5 Process Binning

BSIM3 devices may be binned according to length and width. Refer to Model Binning for details.

99
SIMetrix Simulator Reference Manual

4.29. BSIM4 MOSFETs

4.29 BSIM4 MOSFETs

4.29.1 Notes

The BSIM4 model is only available with the Elite versions of SIMetrix.

BSIM4 models are accessed using LEVEL=14.

Versions 4.21, 4.3, 4.4, 4.5, 4.60, 4.61, 4.62, 4.63, 4.64, 4.65, 4.70 and 4.80 are currently supported. To set
the version to be used, use the VERSION parameter as defined in the following table:

VERSION parameter Use BSIM4 version

4.0 4.21

4.1 4.21

4.2 4.21

4.21 4.21

4.3 4.3

4.4 4.4

4.5 4.5

4.6 4.6

4.61 4.61

4.62 4.62

4.63 4.63

4.64 4.64

4.65 4.65

4.70 4.70

4.80 4.80

Omitted 4.80

Other See notes

Note that a second decimal point will be ignored so 4.2.1 is the same as 4.21. If the version parameter is
set to a value not listed above, SIMetrix will raise an error condition. This can be overridden by setting
.OPTIONS AnyVersion.

The implementation is standard Berkeley but with the addition of the ‘M’ instance parameter which
specifies the number of equivalent parallel devices.

4.29.2 Further Documentation

Original Berkeley documentation is provided at our web site. Please visit Further Documentation for
details. Note the document covers version 4.70 of the model. Earlier versions are available from the
BSIM3/4 web site at BSIM Reference.

4.29.3 Process Binning

BSIM4 devices may be binned according to length and width. Refer to Model Binning for details. Note
the multi-fingered devices are binned according to width per finger.

100
SIMetrix Simulator Reference Manual

http://www.simetrix.co.uk/app/ext/bsim.htm

4.30. BSIM-BULK MOSFET (formerly BSIM6)

4.29.4 Mapping to Level 54 for Hspice

Hspice uses Level 54 to define BSIM4 MOSFETs whereas the SIMetrix level is 14. The
HSPICEMODELS option setting may be used to change this:

.OPTIONS HSPICEMODELS=1

This setting also has the same effect:

.OPTIONS HSPICECOMPATIBILITY=1

See .OPTIONS for more details

4.30 BSIM-BULK MOSFET (formerly BSIM6)

The BSIM-BULK model is available with the Elite versions of SIMetrix

The BSIM-BULK MOSFET model is designed for integrated circuit development for analog and RF
applications. The BSIM-BULK model was developed by The BSIM Group, located in the Department of
Electrical Engineering and Computer Sciences (EECS) at the University of California, Berkeley.

Documentation for the model may be found at the SIMetrix web site. See Further Documentation

4.30.1 Netlist Entry

Mxxx drain gate source bulk [temperature] modelname instance_parameters

4.30.2 NMOS Model Syntax

.model modelname NMOS (LEVEL=77 VERSION=106 parameters)

4.30.3 PMOS Model Syntax

.model modelname PMOS (LEVEL=77 VERSION=106 parameters)

4.30.4 Notes

One version of the model is currently available. This is version 106.2. This may be accessed using
parameters LEVEL=77 and VERSION=106.

The device may have 4 or 5 terminals with the netlist format as shown above.

Self heating will be modelled if the parameter SHMOD is non-zero and RTH0 is greater than zero. If the
temperature node is present it can be used to add a thermal network. If omitted, an internal temperature
node labelled t will be used to implement self-heating effects. This node can be probed using the name
REF#t. For example, if the device has the reference M23, the internal temperature node may be accessed
using the name M23#t. To access internal nodes the KeepInternal option setting must be set. See Option
Settings

This model may be binned on length and width in a similar manner to the BSIM3 model. See Model
Binning.

101
SIMetrix Simulator Reference Manual

4.31. BSIM-CMG MOSFET (FinFET)

4.31 BSIM-CMG MOSFET (FinFET)

The BSIM-CMG model is available with the Elite versions of SIMetrix

The BSIM-CMG MOSFET model is designed for sub 20nm integrated circuit geometries using FinFET
technology. The BSIM-CMG model was developed by The BSIM Group, located in the Department of
Electrical Engineering and Computer Sciences (EECS) at the University of California, Berkeley.

Documentation for the model may be found at the SIMetrix web site. See Further Documentation

4.31.1 Netlist Entry

Mxxx drain gate source bulk [temperature] modelname instance_parameters

4.31.2 NMOS Model Syntax

.model modelname NMOS (LEVEL=72 VERSION=111 parameters)

4.31.3 PMOS Model Syntax

.model modelname PMOS (LEVEL=72 VERSION=111 parameters)

4.31.4 Notes

One version of the model is currently available. This is version 111.0. This may be accessed using
parameters LEVEL=72 and VERSION=111.0

The device may have 4 or 5 terminals with the netlist format as shown above.

Self heating will be modelled if the parameter SHMOD is non-zero and RTH0 is greater than zero. If the
temperature node is present it can be used to add a thermal network. If omitted, an internal temperature
node labelled t will be used to implement self-heating effects. This node can be probed using the name
REF#t. For example, if the device has the reference M23, the internal temperature node may be accessed
using the name M23#t. To access internal nodes the KeepInternal option setting must be set. See Option
Settings

This model may be binned on length and number of fins (NFIN). See Model Binning for details about
binning. Bining model parameters are LMIN, LMAX, NFINMIN and NFINMAX.

4.32 HiSim HV MOSFET

The HiSim HV model is available with the Elite versions of SIMetrix.

The HiSim HV MOSFET model is model designed for integrated circuit design and is used in many PDKs
from IC foundries. The HiSim HV model was developed by the University of Hiroshima.

Documentation for the model may be found at the SIMetrix web site. See Further Documentation

4.32.1 Netlist Entry

Mxxx drain gate source bulk [substrate [temperature]]
modelname instance_parameters

4.32.2 NMOS Model Syntax

102
SIMetrix Simulator Reference Manual

4.33. PSP MOSFET

.model modelname NMOS (LEVEL=level VERSION=version parameters)

4.32.3 PMOS Model Syntax

.model modelname PMOS (LEVEL=level VERSION=version parameters)

See notes below for values of level and version.

4.32.4 Notes

Five versions of the HiSim HV model are available:

Version Parameters to access

1.2.1 LEVEL=62

2.1.0 LEVEL=73, VERSION=2.1

2.2.0 LEVEL=73, VERSION=2.2

2.3.3 LEVEL=73, VERSION=2.3

2.4.2 LEVEL=73, VERSION=2.4

The device may have 4 to 6 terminals with the netlist format is shown below.

Mxxx drain gate source bulk [substrate [temperature]]
modelname instance_parameters

With 4 terminals connected, substrate effect must be disabled by setting parameter COSUBNODE=0. If
the parameter COSELFHEAT is set to 1, self heating will be modelled using an internal temperature node
labelled temp. The internal node can be probed using the name REF#temp. For example, if the device has
the reference M23, the internal temperature node may be accessed using the name M23#temp. To access
internal nodes the KeepInternal option setting must be set. See Option Settings

With 5 terminals connected the behaviour of the model is slightly different between versions. With version
2.1 and greater, the 5th terminal may be configured to be either the substrate node or the temperature node.
If parameter COSUBNODE=1, the substrate node will be enabled and if self-heating is active, the
temperature node will be internal as described for four terminals above. If parameter COSUBNODE=0,
the 5th terminal becomes the temperature node and substrate effect will be inactive.

With 5 terminals connected for version 1.2.1, the fifth terminal is only active if COSUBNODE=1. If
parameter COSUBNODE=0 this connection is simply connected to ground through a zero-volt voltage
source. In both cases the temperature node is internal.

With all 6 terminals connected the parameter COSUBNODE must be set to 1.

Note that if the temperature node is used (5 or 6 terminals) the vecror name REF#temp will return the
’current’ (i.e. the thermal power flow) into the temperature pin.

This model may be binned on length and width in a similar manner to the BSIM3 model. See Model
Binning.

4.33 PSP MOSFET

The PSP model is available with the Elite versions of SIMetrix.

103
SIMetrix Simulator Reference Manual

4.33. PSP MOSFET

4.33.1 Netlist Entry

Mxxxx drain gate source bulk modelname [instance_parameters]

Where:

drain Drain node

gate Gate node

source Source node

bulk Bulk node

modelname Model name referring to a .MODEL statement

instance_parameters List of name/parameter pairs in form name=value. name maybe any of the
following:

W, L, AS, AD, PS, PD, MULT, SA, SB, ABSOURCE, LSSOURCE,
LGSOURCE, ABDRAIN, LSDRAIN, LGDRAIN

Refer to PSP documentation (see below) for further details.

4.33.2 NMOS Model Syntax Version 101.0

MODEL modelname NMOS LEVEL=1010 parameters

OR
.MODEL modelname PSP101 type=1 parameters

4.33.3 PMOS Model Syntax Version 101.0

.MODEL modelname PMOS LEVEL=1010 parameters

OR
.MODEL modelname PSP101 type=-1 parameters

4.33.4 NMOS Model Syntax Version 102.3

MODEL modelname NMOS LEVEL=1023 parameters

OR
.MODEL modelname PSP102 type=1 parameters

4.33.5 PMOS Model Syntax Version 102.3

.MODEL modelname PMOS LEVEL=1023 parameters

OR
.MODEL modelname PSP102 type=-1 parameters

Refer to PSP documentation (see below) for details of parameters

4.33.6 Notes

This is a model jointly developed by NXP (formerly Philips Semiconductor) and Pennsylvania State
University.

Two versions are provided:

104
SIMetrix Simulator Reference Manual

4.34. MOSFET GMIN Implementation

1. 101.0, non-binning, non-NQS geometric version.

2. 102.3, non-binning, non-NQS geometric version.

The model was implemented from the Verilog-A description.

Other versions of the PSP model are available from the NXP SIMKIT devices. See SIMKIT Devices.

Documentation for the model may be found at our web site. Please refer to Further Documentation for
details.

4.34 MOSFET GMIN Implementation

GMIN is a conductance added to all non-linear devices to improve DC convergence. For LEVEL 1-3 and
LEVEL 17 MOSFETs, the default GMIN is implemented as shown below:

This is compatible with SPICE and earlier versions of SIMetrix.

For BSIM3 and BSIM4 devices, and also for LEVEL1-3 and LEVEL 17 devices if the NEWGMIN
.OPTIONS setting is set, the GMIN implementation is:

OLDMOSGMIN is a .OPTIONS setting with the default value of zero. MOSGMIN is also a .OPTIONS
setting with the default value of GMIN. Using the above configuration with OLDMOSGMIN =0 often
converges faster especially if the Junction GMIN stepping algorithm is used.

4.35 Resistor

105
SIMetrix Simulator Reference Manual

4.35. Resistor

4.35.1 Netlist Entry

Rxxxx n1 n2 [model_name] [value] [L=length] [W=width] [ACRES=ac_resistance]
[TEMP=local_temp] [TC1=tc1] [TC2=tc2] [M=mult] [DTEMP=dtemp]

n1 Node 1

n2 Node 2

model_name (Optional) Name of model. Must begin with a letter but can contain any
character except whitespace and ‘.’

value Resistance (W)

length Length of resistive element in metres. Only used if value is omitted. See
notes below

width Width of resistive element in metres. Only used if value is omitted. See
notes below

ac_resistance Resistance used for AC analyses and for the calculation of thermal noise.
If omitted, value defaults to final resistance value.

local_temp Resistor temperature (C)

tc1 First order temperature coefficient

tc2 Second order temperature coefficient

mult Device multiplier. Equivalent to putting mult devices in parallel.

dtemp Differential temperature. Similar to local_temp but is specified relative to
circuit temperature. If both TEMP and DTEMP are specified, TEMP takes
precedence.

4.35.2 Notes

• If model_name is omitted, value must be specified.

• If model_name is present and value is omitted, length and width must be specified in which case the
value of the resistance is RES * RSH * L/W where RSH is the sheet resistance model parameter and
RES is the resistance multiplier. See model parameters below. If ACRES is specified and non-zero
its value will be used unconditionally for AC analyses and the calculation of thermal noise.

4.35.3 Resistor Model Syntax

.model modelname R (parameters)

4.35.4 Resistor Model Parameters

Name Description Units Default

RES Resistance multiplier 1

TC1 First order temperature coefficient 1/°C 0

TC2 Second order temperature
coefficient

1/°C2 0

RSH Sheet resistance W/sq 0

KF Flicker noise coefficient m2/W2 0

106
SIMetrix Simulator Reference Manual

4.36. Resistor - Hspice Compatible

Name Description Units Default

EF Flicker noise exponent 1

TNOM, T_MEASURED Reference temperature; the temperature at
which the model parameters were
measured

°C 27

T_ABS If specified, defines the absolute model
temperature overriding the global
temperature defined using .TEMP

°C .TEMP

T_REL_GLOBAL Offsets global temperature defined using
.TEMP. Overridden by T_ABS

°C 0.0

4.35.5 Notes

The flicker noise parameters are proprietary to SIMetrix. Flicker noise voltage is:

V 2
n = KF · RSH2/(L ·W) · V 2

r ·∆f/fEF

Where:

V r = Voltage across resistor.

The equation has been formulated so that KF is constant for a given resistive material.

If one of L, W is not specified, the flicker noise voltage becomes:

V 2
n = KF · R2 · V 2

r ·∆f/fEF

Where R is the final resistance.

i.e. the noise current is independent of resistance. This doesn’t have any particular basis in physical laws
and is implemented this way simply for convenience. When resistor dimensions and resistivity are
unavailable, the value of KF will need to be extracted for each individual value.

4.36 Resistor - Hspice Compatible

4.36.1 Netlist Entry

Rxxxx n1 n2 [model_name] [value] [L=length] [W=width] [AC=ac_resistance] [TC1=tc1]
[TC2=tc2] [M=mult] [SCALE=scale] [DTEMP=dtemp] [C=c]

model_name Name of .MODEL. This is compulsory unless this model made the default
resistor. See Making the Hspice Resistor the Default.

value Value of resistor. This may be an expression relating parameters defined
using .PARAM and circuit variables in the form V(n1,n2) and I(device).
Expressions must be enclosed in curly braces or quotation marks.
Typically the expression relates to the resistor’s own terminals in order to
define voltage dependence

length Length in metres

width Width in metres

107
SIMetrix Simulator Reference Manual

4.36. Resistor - Hspice Compatible

ac_resistance Value of resistor for AC analyses. Like the main value, this may also be an
expression. See above under value for details

tc1 First order temperature coefficient

tc2 Second order temperature coefficient

mult Device multiplier. Equivalent to putting mult devices in parallel, but note
that this value does not have to be integral

scale Scales resistance and capacitance values. E.g. Reff=scale*R

dtemp Differential temperature. Device temperature = global temperature +
dtemp

c Capacitance to reference node

4.36.2 Resistor Model Syntax

.model modelname R (LEVEL=2 parameters)

Name Description Units Default

BULK Bulk connection for capacitance Ground

CAP Device capacitance F 0.0

CAPSW Sidewall capacitance F/m 0.0

COX Capacitance per unit area F/m2 0.0

CRATIO Capacitance terminal distribution 0.5

DI Dielectric constant 0.0

DL Difference between drawn length and actual length
for capacitance calculation

m DW

DLR Difference between drawn length and actual length
for resistance calculation

m 0.0

DW Difference between drawn width and actual
width

m 0.0

L, ML Length m 0.0

W, MW Width m 0.0

NOISE Noise multiplier 1.0

RAC AC resistance W
RES Resistance W 0.0

RSH Sheet resistance W/sq 0.0

SHRINK Shrink factor 1.0

TC1C Capacitance first order temperature
coefficient

1/C 0.0

TC1R Resistance first order temperature coefficient 1/C 0.0

TC2C Capacitance second order temperature
coefficient

1/C2 0.0

TC2R Resistance second order temperature
coefficient

1/C2 0.0

THICK Dielectric thickness m 0.0

108
SIMetrix Simulator Reference Manual

4.36. Resistor - Hspice Compatible

Name Description Units Default

TREF Measurement temperature C TNOM

ACRESMOD AC resistance model selector. See ACRESMOD
Parameter

0

KF Flicker noise coefficient 0

AF Flicker noise current exponent 2.0

LF Flicker noise length exponent 1.0

WF Flicker noise width exponent 1.0

EF Flicker noise frequency exponent 1.0

4.36.3 Resistance Calculation

In the following reff is the effective non-temperature adjusted resistance used for DC analyses, reffac is the
effective non-temperature adjusted resistance used for AC analyses.

If instance resistance is specified:

reff = value * SCALE/M

otherwise if weff *leff *RSH>0

reff = SCALE*RSH*leff / (weff*M)

where:

weff = SHRINK*W - 2*DW

leff = SHRINK*L - 2*DLR

otherwise

reff = SCALE*RES/M

If instance AC parameter is specified:

raceff = AC*SCALE/M

otherwise if RAC given

raceff = SCALE*RAC/M

otherwise

raceff = reff

109
SIMetrix Simulator Reference Manual

4.36. Resistor - Hspice Compatible

4.36.4 Capacitance Calculation

capeff is the non temperature adjusted capacitance.

If instance parameter C is given:

capeff = M*SCALE*C

otherwise if model parameter CAP is given

capeff = M*SCALE*CAP

otherwise

capeff = (leffc*weffc*coxmod + 2*((leffc+weffc)*CAPSW))*M*SCALE

where:

leffc = SHRINK*L - 2*DL

weffc = SHRINK*W - 2*DW

See below for coxmod calculation.

Calculation of COX

If COX given

coxmod = COX

otherwise if THICK <> 0 AND DI<>0

coxmod = 8.8542149e-012*DI/THICK

otherwise if THICK <> 0 AND DI=0

coxmod = 3.453148e-011/THICK

otherwise

coxmod = 0.0

110
SIMetrix Simulator Reference Manual

4.36. Resistor - Hspice Compatible

4.36.5 Temperature Scaling

Resistance

R(t) = reff * tscale

where:

tscale = 1+(tc1inst+tdelta*tc2inst)*tdelta

where

tdelta = tinst-TREF-273.15

tc1inst = if instance TC1 given: TC1 else TC1R

tc2inst = if instance TC2 given: TC2 else TC2R

tinst = [global circuit temperature] + DTEMP (Kelvin)

Capacitance

C(t) = capeff * tscale

where

tcscale = 1+(TC1C+tdelta*TC2C)*tdelta

tdelta defined above.

4.36.6 Flicker Noise

In =
KF× IAF

LLF
eff ×WWF

eff × fEF

4.36.7 ACRESMOD Parameter

This parameter controls the calculation of resistance in AC analysis. With ACRESMOD=0 AC analysis
uses the large signal resistance value, that is the value of resistance calculated during the DC analysis. If
ACRESMOD=1, the small signal resistance is used, that is, the value of dv/di at the operating point. If the
resistance is defined as an expression containing circuit variables (i.e. it is voltage dependent), the large
signal resistance is different to the small signal resistance.

This resistor model has been developed primarily for compatibility with Hspice models. Hspice itself
always uses the large signal resistance. However, this will create a discrepancy between AC analysis and a
transient analysis of a small signal. To resolve this discrepancy, set ACRESMOD to 1.

In summary, to be compatible with Hspice, use ACRESMOD=0, for consistent results between AC and
transient analyses, use ACRESMOD=1.

In noise analysis the large signal value is always used.

4.36.8 Making the Hspice Resistor the Default

This resistor model requires the specification of a model name and the creation of a .MODEL statement
with LEVEL=2. This is likely to be inconvenient if a model file containing Hspice resistors is being used.

To overcome this, the HSPICEMODELS option setting may be used to make this resistor the default. Add
this line to the netlist:

111
SIMetrix Simulator Reference Manual

4.38. Subcircuit Instance

.OPTIONS HSPICEMODELS=1

This setting also has the same effect:

.OPTIONS HSPICECOMPATIBILITY=1

See .OPTIONS for more details

4.37 CMC Resistor

4.37.1 Netlist entry

Uxxxx n1 nc n2 model_name parameters

4.37.2 Model Format

.MODEL model_name R3_CMC model_parameters

Full details of this model can be found in the document r3_cmc_release1.0.0_2007Jun12.pdf which may
be found at our web site. Please refer to Further Documentation for details.

4.38 Subcircuit Instance

4.38.1 Netlist Entry

Xxxxx n1 n2 n3 ... subcircuit_name [pinnames: pin1 pin2 pin3 ...] [[params:]
[M=m] expression1 expression2]

n1, n2 etc. Subcircuit nodes

pin1, pin2 etc. If the pinnames: keyword is included the names following it will be used
to name subcircuit current vectors generated by the simulator.

subcircuit_name Subcircuit name referred to in subcircuit definition (i.e. with .SUBCKT
statement)

m Multiplier. If present, the subcircuit will be multiplied by m as if there
were m devices in parallel. m may be an expression in which case it must
be enclosed by curly braces: ‘{’, ‘}’.

Note that the multiplication is performed by scaling the internal devices
not by actually replicating the subcircuit. Non integral values of m are thus
permitted. Some types of device can not currently be scaled and
subcircuits containing them will not support M. An error will displayed in
this case.

M will be interpreted as a regular parameter and will not scale the
subcircuit instance if M is declared as a parameter in the .SUBCKT line or
the following option setting is included in the netlist: .OPTIONS
DisableSubcktMultiplier

expression1 etc. Parameter expressions. See Using Expressions.

See Subcircuits for more information.

112
SIMetrix Simulator Reference Manual

4.40. Voltage Controlled Current Source

4.39 Transmission Line

4.39.1 Netlist Entry

Txxxx p1 n1 p2 n2 Z0=impedance [TD=delay] [F=frequency [NL=norm_length]]
[rel=rel] [abs=abs]

p1 Positive input port 1

n1 Negative input port 2

p2 Positive input port 1

n2 Negative input port 2

impedance characteristic impedance

delay Line delay (Seconds)

frequency Alternative means of specifying delay = norm_length/frequency

norm_length See frequency. Default 0.25 if omitted.

TD takes precedence over NL/F. Either TD or F must be specified.

These remaining parameters control the way the line is simulated rather than its electrical characteristics.
More accurate results (at the expense of simulation time) can be obtained by using lower values.

rel Relative rate of change of derivative for breakpoint

abs Absolute rate of change of derivative for breakpoint

4.39.2 Example

The above line has an impedance of 50Ω and a delay of 1µS.

4.40 Voltage Controlled Current Source

4.40.1 Netlist Entry

Gxxxx nout+ nout- vc+ vc- [GAIN=]transconductance [GOUT=output_conductance]

nout+ Positive output node

nout- Negative output node

vc+ Positive control node

113
SIMetrix Simulator Reference Manual

4.41. Voltage Controlled Switch

vc- Negative control node

transconductance Output current/Input voltage (Siemens or mhos)

output_conductance Conductance at output terminals. Default=0

GOUT has a default value of zero unless the PSPICEGMIN option is set in which case it has a default
value of GMIN. GMIN is set using ".OPTIONS GMIN=value" and has a default value of 1e-12.

SPICE2 polynomial sources are also supported in order to maintain compatibility with commercially
available libraries for IC’s. (Most operational amplifier models for example use several polynomial
sources). In general, however the arbitrary source is more flexible and easier to use.

The netlist format for a polynomial source is:

Gxxxx nout+ nout- POLY(num_inputs) vc1+ vc1- vc2+ vc2- ...
+ polynomial_specification

vc1+ etc. Controlling nodes

num_inputs Number of controlling node pairs for source.

polynomial_specification See Polynomial Specification.

4.40.2 PSpice Syntax

SIMetrix accepts PSpice syntax for arbitrary sources using VALUE, TABLE, Q and F operators. See
PSpice and Hspice Syntax for more details.

SIMetrix also accepts the PSpice LAPLACE and FREQ operators. See PSpice LAPLACE and FREQ
compatibility

4.41 Voltage Controlled Switch

4.41.1 Netlist Entry

Sxxxx nout1 nout2 vc+ vc- modelname IC=ic

nout1 Switch node 1

nout2 Switch node 2

vc+ Positive control node

vc- Negative control node

modelname Name of model. Must begin with a letter but can contain any character
except whitespace and period ‘.’.

ic Initial condition. Hysteresis mode only. Defines initial state of switch if
control voltage is between upper and lower thresholds. 0 for ‘OFF’ 1 for
‘ON’

4.41.2 Voltage Controlled Switch Model Syntax

.model modelname VSWITCH (parameters)

OR

114
SIMetrix Simulator Reference Manual

4.41. Voltage Controlled Switch

.model modelname SW (parameters)

4.41.3 Voltage Controlled Switch Model Parameters

Name Description Units Default

RON On resistance Ω 1

ROFF Off resistance Ω Hysteresis mode: 1.0E12.
Continuous mode: 1.0E6

VON Voltage at which switch begins to turn on.
(continuous mode)

V 1

VOFF Voltage at which switch begins to turn off.
(continuous mode)

V 0

VT If present enables hysteresis mode. Sets
threshold voltage

V 0.5

VH Hysteresis voltage. (hysteresis mode) V 1.0

TON On time. (hysteresis mode) s 1ns

TOFF Off time. (hysteresis mode) s 1n

TD Delay time. (hysteresis mode) s 0

TD_ON On delay. (hysteresis mode) s TD

TD_OFF Off delay. (hysteresis mode) s TD

TIMETOL Time tolerance. (hysteresis mode) s 10p

GIN Conductance at control terminals Siemens 0

GIN has a default value of zero unless the PSPICEGMIN option is set in which case it has a default value
of GMIN. GMIN is set using ".OPTIONS GMIN=value" and has a default value of 1e-12.

4.41.4 Voltage Controlled Switch Notes

The voltage controlled switch has two modes of operation:

1. Continuous mode: Behaves like a voltage controlled resistor. Between VON and VOFF the
resistance varies gradually following a cubic law as described with the following equation:

where:

R = 1/exp(−Lm− Lr ∗ factor ∗ (1.5− 2 ∗ factor ∗ factor))

factor = Vcontrol − 0.5

Lm = −0.5 ∗ ln(gon ∗ goff)

Lr = ln(goff/gon)

goff = ROFF <> 0 : 1/ROFF,ROFF = 0 : GMIN

gon = RON <> 0 : 1/RON,RON = 0 : GMIN

2. Hysteresis mode: Switches in a controlled time with a hysteresis characteristic. This mode is
enabled if the VT parameter is defined. The switch transitions to the on state when:

Vcontrol > V T + V H

and to the off state when:

115
SIMetrix Simulator Reference Manual

4.42. Voltage Controlled Switch - Perfect

Vcontrol < V T − V H

The transition will be delayed by TD and the transition time will be TON when changing from OFF
state to ON state and TOFF when changing from ON state to OFF state.

The transition will follow the same characteristic as continuous mode. That is, during the transition
period the actual resistance of the switch will follow the continuous mode characteristic with the
control voltage following a linear transition between VON and VOFF.

Hysteresis mode is similar and usually compatible with what is known as short-transition mode in
PSpice. The difference is that in short-transition mode, the switching time is uncontrolled whereas
in SIMetrix hysteresis mode the transition time is controlled by the TON and TOFF parameters.

GMIN is a simulation parameter which defaults to 10E-12 but which can changed using the .OPTIONS
statement.

The SIMetrix voltage controlled switch is compatible with PSpice® but note that in hysteresis mode, the
SIMetrix switches in a controlled time whereas the PSpice version switches abruptly.

4.42 Voltage Controlled Switch - Perfect

4.42.1 Netlist Entry

Uxxxx nout1 nout2 vc+ vc- modelname

nout1 Switch node 1

nout2 Switch node 2

vc+ Positive control node

vc- Negative control node

modelname Name of model. Must begin with a letter but can contain any character
except whitespace and period ‘.’.

4.42.2 Perfect Voltage Controlled Switch Model Syntax

.model modelname perfect_switch (parameters)

4.42.3 Perfect Voltage Controlled Switch Model Parameters

Name Description Units Default

RMID Switch resistance when control voltage is
(VON+VOFF)/2

Ω 1.0

VON Voltage at which switch is fully on (Rswitch = 0.0) V 1.0

VOFF Voltage at which switch is fully off (Rswitch =∞) V 0.0

4.42.4 Perfect Voltage Controlled Switch Notes

The perfect voltage controlled switch model has zero on resistance and infinite off resistance.

116
SIMetrix Simulator Reference Manual

4.43. Voltage Controlled Source

The resistance of the switch is defined as follows:

Vramp =
Vc − V OFF

V ON − V OFF

Vramp >= 1.0 : Rswitch = 0.0

Vramp <= 0.0 : Rswitch =∞

0.0 < Vramp < 1.0 : Rswitch =
1.0− Vramp

Vramp ·RMID

Where:

Vc is the voltage between terminals vc+ and vc-

Rswitch is the resistance connecting nout1 and nout2

V OFF , V ON and RMID are model parameters as defined above

Note that the perfect voltage controlled switch model is noise-free

4.43 Voltage Controlled Voltage Source

4.43.1 Netlist Entry

Exxxx nout+ nout- vc+ vc- gain

nout+ Positive output node

nout- Negative output node

vc+ Positive control node

vc- Negative control node

gain Output voltage/Input voltage

SPICE2 polynomial sources are also supported in order to maintain compatibility with commercially
available libraries for ICs. (Most opamp models for example use several polynomial sources). In general,
however the arbitrary source is more flexible and easier to use.

The netlist format for a polynomial source is:

Exxxx nout+ nout- POLY(num_inputs) vc1+ vc1- vc2+ vc2-
... polynomial_specification

vc1+ etc. Controlling nodes

num_inputs Number of controlling node pairs for source.

polynomial_specification See Polynomial Specification

4.43.2 PSpice Syntax

SIMetrix accepts PSpice syntax for arbitrary sources using VALUE, TABLE, Q and F operators. See
PSpice and Hspice Syntax for more details.

SIMetrix also accepts the PSpice LAPLACE and FREQ operators. See PSpice LAPLACE and FREQ
compatibility

117
SIMetrix Simulator Reference Manual

4.44. Voltage Source

4.44 Voltage Source

4.44.1 Netlist Entry

Vxxxx n+ n- [[DC] dcvalue] [DCOP] [INFCAP] [AC magnitude [phase]]
[transient_spec]

N+ Positive node

N- Negative node

DCOP If this is specified, the voltage source will only be active during the DC
operating point solution. In other analyses, it will behave like an open
circuit. This is an effective method of creating a ‘hard’ initial condition.
See Alternative Initial Condition Implementations for an example.

INFCAP If specified, the voltage source will behave as an infinite capacitor. During
the DC operating point solution it will behave like an open circuit. In the
subsequent analysis, it will behave like a voltage source with a value equal
to the solution found during the operating point. Note that the device is
inactive for DC sweeps - as all capacitors are.

dcvalue Value of source for dc operating point analysis

magnitude AC magnitude for AC sweep analysis.

phase phase for AC sweep analysis

transient_spec Specification for time varying source as described in the following
table.

Type Description

PULSE Pulse source. Also generates, ramps, sawtooths and triangles

PWL Piece wise linear source. Can create any waveform

PWLFILE As PWL but get definition from a file

SIN Sine wave

EXP Exponential signal

SFFM Single frequency FM

NOISE Real time noise source

4.44.2 Pulse Source

PULSE (v1 v2 [td [tr [tf [pw [per]]]]])

Where:

Name Description Default

v1 Initial value (V,A) Compulsory

v2 Pulsed value (V,A) Compulsory

td Delay time (S) Default if omitted = 0

tr Rise time (S) Default if omitted, negative or zero = Time stepa

118
SIMetrix Simulator Reference Manual

4.44. Voltage Source

Name Description Default

tf Fall time (S) Default if omitted, negative or zero = Time step

pw Pulse width (S) Default if omitted or negative = Stop timeb

per Period (S) Default if omitted, negative or zero = Stop time

a. Time step is set up by the .TRAN simulator statement which
defines a transient analysis. Refer to .TRAN.

b. Stop time refers to the end time of the transient analysis.

SIMetrix deviates from standard SPICE in the action taken for a pulse width of zero. Standard SPICE
treats a zero pulse width as if it had been omitted and changes it to the stop time. In SIMetrix a zero pulse
width means just that.

Both the above examples give a pulse lasting 5µS with a period of 10µS, rise and fall times of 100nS and a
delay of 0. The voltage source has a 0V base line and a pulse of 5V while the current source has a 0mA
base line and a pulse of 1mA.

Examples

4.44.3 Piece-Wise Linear Source

PWL (t1 v1 [t2 v2 [t3 v3 [...]]])

119
SIMetrix Simulator Reference Manual

4.44. Voltage Source

Each pair of values (ti vi) specifies that the value of the source is vi at time = ti. The value of the source at
intermediate values of time is determined by using linear interpolation on the input values.

Although the example given below is for a voltage source, the PWL stimulus may be used for current
sources as well.

Example

Gives:

4.44.4 PWL File Source

PWLFILE filename

This performs the same function as the normal piece wise linear source except that the values are read
from a file named filename.

The file contains a list of time voltage pairs in text form separated by any whitespace character (space, tab,
new line). It is not necessary to add the ‘+’ continuation character for new lines but they will be ignored if
they are included. Any non-numeric data contained in the file will also be ignored.

120
SIMetrix Simulator Reference Manual

4.44. Voltage Source

Notes

The PWLFILE source is considerably more efficient at reading large PWL definitions than the standard
PWL source. Consequently it is recommended that all PWL definitions with more than 200 points are
defined in this way.

The data output by Show /file is directly compatible with the PWLFILE source making it possible to
save the output of one simulation and use it as a stimulus for another. It is recommended, however, that the
results are first interpolated to evenly spaced points using the Interp() function.

The use of engineering suffixes (e.g. k, m, p etc.) is not supported by PWLFILE.

The PWLFILE source is a feature of SIMetrix and does not form part of standard SPICE.

Note, you can use the simulator statements .FILE and .ENDF to define the contents of the file. E.g.

Vpwl1 N1 N2 PWLFILE pwlSource
...
.FILE pwlSource
...
...
.ENDF

This will be read in much more efficiently than the standard PWL and is recommended for large
definitions. See .FILE and .ENDF.

4.44.5 Sinusoidal Source

SIN[E] (vo va [freq [delay [theta [phase]]]])

Where:

Name Description Default

vo Offset (V,A) Compulsory

va Peak (V,A) Compulsory

freq Frequency (Hz) Default if omitted or zero= 1/Stop timea

delay Delay (seconds) Default if omitted = 0

theta Damping factor (1/seconds) Default if omitted = 0

phase Phase in degrees Default if omitted = 0

a. Stop time refers to the end time of the transient analysis.

The shape of the waveform is described by:

0 to delay: vo

delay to Stop time vo+ va · e−(t−delay)..theta · sin(2π(freq · (t− delay) + phase/360))

121
SIMetrix Simulator Reference Manual

4.44. Voltage Source

Example

Gives output of:

4.44.6 Exponential Source

EXP (v1 v2 [td1 [tau1 [td2 [tau2]]]])

Where:

Name Description Default

v1 Initial value (V,A) Compulsory

v2 Pulsed value (V,A) Compulsory

td1 Rise delay time Default if omitted or zero: 0

tau1 Rise time constant Default if omitted or zero: Time stepa

td2 Fall delay time Default if omitted or zero: td1 + Time step

tau2 Fall time constant Default if omitted or zero: Time step
122

SIMetrix Simulator Reference Manual

4.44. Voltage Source

a. Time step is set up by the .TRAN simulator directive which defines a
transient analysis. Refer to .TRAN.

Defined by:

0 to td1: v1

td1 to td2: v1 + (v2− v1).[1− e−(t−td1)/tau1]

td2 to stop time: v1 + (v2− v1).[1− e−(t−td1)/tau1] + (v2− v1).[1− e−(t−td2)/tau2]

4.44.7 Single Frequency FM

SFFM (vo va [fc [mdi [fs]]])

Where:

Name Description Default

vo Offset (V,A) Compulsory

va Amplitude (V,A) Compulsory

fc Carrier frequency (Hz) Default if omitted or zero = 1/Stop timea

mdi Modulation index Default if omitted = 0

fs Signal frequency (Hz) Default if omitted or zero = 1/Stop time

a. Stop time refers to the end time of the transient analysis.

Defined by: vo+ va · sin[2π · fc · t+ mdi · sin(2π · fs · t)]

4.44.8 Noise Source

noise interval rms_value [start_time [stop_time]]

Source generates a random value at interval with distribution such that spectrum of signal generated is
approximately flat up to frequency equal to 1/(2*interval). Amplitude of noise is rms_value volts.
start_time and stop_time provide a means of specifying a time window over which the source is enabled.
Outside this time window, the source will be zero. If stop_time is omitted or zero a value of infinity will be
assumed.

4.44.9 Extended PWL Source

PWLS [TIME_SCALE_FACTOR=time_factor] [VALUE_SCALE_FACTOR=value_factor]
pwls_spec [pwls_spec ...]

Where:

time_factor Scales all time values in definition by time_factor

value_factor Scales all magnitude values by value_factor

123
SIMetrix Simulator Reference Manual

4.44. Voltage Source

pwls_spec may be one of the following:

(time, value) Creates a single data point. time is relative to
the current context.

(+time, value) Creates a single data point. time is relative to
the previous point.

REPEAT FOR n pwls_spec
ENDREPEAT

Repeats pwls_spec n times.

REPEAT FOREVER pwls_spec
ENDREPEAT

Repeats pwls_spec forever

SIN sine_parameters
END

Creates a sinusoid. See table below for
definition of sine_parameters

PULSE pulse_parameters
END

Creates a pulse train. See table below for
definition of pulse_parameters

FILE file_name Loads a definition from file file_name. If the
name contains spaces, it must be quoted

WAV wav_file_parameters
END

Loads a WAV file

Sine Parameters

Name Description Default Compulsory

FREQ Frequency N/A Yes

PEAK Peak value of sine 1.0 No

OFFSET Offset 0.0 No

DELAY Delay before sine starts. 0.0 No

PHASE Phase 0.0 No

CYCLES Number of cycles. Use -1.0 for infinity -1.0 No

MINPOINTS Minimum number of timesteps used per cycle 13 No

RAMP Frequency ramp factor 0.0 No

The sine value is defined as follows:
if t>0 OR DELAY<0

PEAK * SIN(f*2pi*t+PHASE*pi/180) + OFFSET
else

PEAK * SIN(PHASE*pi/180) + OFFSET

Where:

f = FREQ + t×RAMP

t = time - tref - DELAY

time is the global simulation time

tref is the reference time for this spec

Pulse Parameters

124
SIMetrix Simulator Reference Manual

4.45. Mutual Inductor

Name Description Default Compulsory

V0 Offset 0 No

V1 Positive pulse value 1.0 No

V2 Negative pules value -1.0 No

RISE Rise time i.e time to change from V2 to
V1

PERIOD/1000 No

FALL Fall time i.e time to change from V1 to
V2

PERIOD/1000 No

WIDTH Positive pulse width (PERIOD-RISE-FALL)/2 No

PERIOD Period N/A Yes

DELAY Delay before start 0 No

CYCLES Number of complete cycles. -1 means
infinity

-1 No

RISE, FALL, WIDTH and PERIOD must be greater than zero. DELAY must be greater than or equal to
zero

WAV Parameters

Name Description Default Compulsory

FILE WAV File path N/A Yes

PEAK Peak value 1.0 No

INTERVAL Time duration of signal in seconds Whole signal No

CHANNEL Data Channel. 0 or 1 - currently only 1 or
2 channels is supported. Can also use ’L’,
’R’, ’LEFT’ and ’RIGHT’

0 No

SAMPLE_RATE Sample rate Read from file No

Reads a WAV format data file. WAV is a format used generally for sampled audio data. SIMetrix can read
these files subject to these conditions:

No more than 2 channels

Bits per sample is 8, 16, 24 or 32

Data is uncompressed

4.45 Mutual Inductor

Specifies coupling between two inductors.

4.45.1 Netlist Entry

Kxxxx l1 l2 coupling_factor

125
SIMetrix Simulator Reference Manual

4.45. Mutual Inductor

l1 Component reference of first inductor

l2 Component reference of second inductor

coupling_factor Coupling factor, K

If mutual inductance is M then:

vL1
= L1

diL1

dt
+M

diL2

dt

vL2 = L2
diL2

dt
+M

diL1

dt

K =
M√
L1 · L2

K cannot be greater than 1.

4.45.2 Notes

You can only couple ideal inductors using this method. The saturable inductor devices may not be coupled
in this way. See Inductor (Saturable) for more information.

To use the mutual inductor directly on a schematic you will need to add the device line to the netlist. See
Adding Extra Netlist Lines for information about how to do this.

If you wish to couple more than two inductors, the coupling coefficient (K value) must be specified for
every possible combination of two inductors. An error will result if this is not done.

For iron cored transformers values of K between 0.99 and 0.999 are typical. For ferrites lower values
should be used. If the windings are concentric (i.e. one on top of the other) then 0.98 to 0.99 are
reasonable. If the windings are side by side on a sectioned former, K values are lower - perhaps 0.9 to
0.95. The addition of air gaps tends to lower K values.

4.45.3 Example

A transformer with 25:1 turns ratio and primary inductance of 10mH

** Inductors
Lprimary N1 N2 10m
Lsecondary N3 N4 16u

** Coupling of 0.99 typical for ungapped ferrite
K1 Lprimary Lsecondary 0.99

126
SIMetrix Simulator Reference Manual

4.46. Verilog-HDL Interface (VSXA)

4.46 Verilog-HDL Interface (VSXA)

4.46.1 Overview

The VSXA device provides digital functionality defined by a Verilog-HDL definition. The connections to
the VSXA device map directly to input and output ports defined within the Verilog-HDL module and may
be connected to analog or digital SIMetrix components or other VSXA devices.

The Verilog-HDL simulation is performed by an external Verilog simulator and at least one such simulator
is supplied with SIMetrix and is pre-installed with no additional setup or configuration required.
Communication between the external Verilog-HDL simulator is achieved through the VPI programming
interface and in principle this can allow any VPI compliant Verilog-HDL simulator to be used for this
purpose.

This section describes details of the VSXA device. For more general information about using the
Verilog-HDL feature, refer to Chapter 13 in the User’s Manual.

Netlist

Uxxxx nodes modelname

nodes Nodes connecting to Verilog device. Nodes that appear here map directly
to the port connections in the top level module in the Verilog file defined in
the associated .MODEL statement. If the Verilog definition contains
vector connections, the sizes of those connections may be defined using
the PORTSIZES model parameter. See below for details.

modelname Name of model. Used to reference .MODEL statement

Model Syntax

MODEL modelname vsxa parameters

Name Description Units Default

LOAD Path to file name of Verilog
definition.

n/a Compulsory

IN_LOW Input analog low threshold
voltage. A logic zero will be
detected when the analog
voltage drops below this
threshold

V 2.2

IN_HIGH Input analog high threshold
voltage. A logic one will be
detected when the analog
voltage rises above this
threshold

V 2.3

OUT_LOW Output voltage for a logic
zero

V 0

OUT_HIGH Output voltage for a logic
one

V 5

127
SIMetrix Simulator Reference Manual

4.46. Verilog-HDL Interface (VSXA)

Name Description Units Default

T_RISE Output rise time sec 100p

T_FALL Output fall time sec 100p

IN_RES Input resistance Ohms 1e12

OUT_RES Output resistance for logic zero
and logic one states

Ohms 100

OUT_RES_HIZ Output resistance for the high
impedance state

Ohms 1e12

TIME_TOL Input threshold time tolerance.
This parameter works in the
same way as the TIME_TOL
parameter defined for the A-D
Interface bridge used in the
built-in digital simulator. This
is described in Time Step
Control - TIME_TOL
parameter

sec 100p

DISABLE_INTERNAL_VECTORS VSXA instances that are
connected to each other but not
to any other SIMetrix device
still generate digital vectors to
allow plotting of those nodes.
Setting this parameter to 1
disables this

0 (false)

DISABLE_ MODULE_ CACHE No cache data will be created
for this model.

0 (false)

PORTSIZES Array of values defining the
size of each port. If any of the
Verilog ports are vectors,
SIMetrix needs to know their
size. If this parameter is not
specified, it will assume they
are the size defined in the
Verilog module. If any is
actually smaller, this needs to
be defined in this
parameter.

This is a vector value with one
value for each port. So if there
are three ports, PORTSIZES
would be set like this for
example:

PORTSIZES=[2,3,5]

which would set the first port to
size 2, the second to size 3 and
the last to size 5

see description

128
SIMetrix Simulator Reference Manual

4.46. Verilog-HDL Interface (VSXA)

Name Description Units Default

PORTINIT Initial state for input ports if dc
solution lies between in_low
and in_high. This is a vector
value with one value for each
input port. So if there are two
input ports, PORTINIT would
be set like this for
example:

PORTINIT=[1,1]

which would set both ports to a
logic one indicating if the
analog input lies between the
defined thresholds. If a
PORTINIT value is set to 2, the
port will be set to the
UNKNOWN state.

Note that vector ports are
treated as one for this
parameter.

0

As well as the above parameters, you can also define values for parameters declared in the associated
Verilog file. These carry the same name as the Verilog parameter.

4.46.2 Analog Input Interface

Any port in the Verilog definition that is defined as an input will be treated by the analog simulator as a
VSXA input connection. This has the following characteristics:

1. Input resistance equal to the value of the in_res model parameter.

2. Detects a logic one when the input signal rises above a voltage equal to the in_high model parameter.

3. Detects a logic low when the input signal drops below a voltage equal to the in_low model
parameter.

4. When the input voltage is between the in_low and in_high values, the signal detected will be the
most recent value detected, that is it will hold its value like a schmitt trigger. For DC and t=0 the
value will be that defined by the PORTINIT parameter. This is logic zero by default. A PORTINIT
value of 1 will set this to logic one and any other value will set it to an unknown state.

5. The analog system will only send an UNKNOWN state to a Verilog input if the DC voltage lies
between the thresholds and the corresponding PORTINIT value is other than 0 or 1. Once an input
has acquired a logic zero or logic one state, it will thereafter behave as a schmitt trigger.

Important: VSXA inputs that are only connected to other VSXA inputs and no more than one VSXA
output are implemented entirely within the Verilog domain and are not connected to the analog simulator.
The digital data for such connections is nevertheless made available. See for further details.

4.46.3 Analog Output Interface

Any port in the Verilog definition that is defined as an output will be treated by the analog simulator as a
VSXA output connection. This is modelled as shown in the following diagram:

129
SIMetrix Simulator Reference Manual

4.46. Verilog-HDL Interface (VSXA)

Each switch has an on state resistance of OUT_RES and an off state resistance of OUT_RES_HIZ. In the
logic one state, S1 is on, in the logic zero state S2 on, while in the high-impedance state, neither switch is
on. When transitioning from one state to another state, each switch’s resistance changes linearly to the new
state’s value in the time determined by the parameters T_RISE and T_FALL.

Important: A VSXA output that is only connected to VSXA inputs is implemented entirely within the
Verilog domain and are not connected to the analog simulator.

4.46.4 Data Vector Output

Voltage Data

Connections between VSXA devices and any other SIMetrix device (including non-Verilog digital
devices) are analog nodes in every way and will generate voltage data vectors in the usual way.

Connections between VSXA devices and other VSXA devices that do not connect to anything else and do
not connect more than one Verilog module output port are implemented entirely within the Verilog
simulator domain and do not interface to the analog simulator. For such connections, digital data vectors
are created. These transition between the values OUT_LOW and OUT_HIGH with rise and fall times
equal to the timing resolution set by the VerilogResolution option setting. This defaults to 1fs.

In some situations it is possible that the overhead of creating this data could slow down the simulation.
This would be the case where such internally connected signals carry high speed data that is much faster
than the analog time steps. In these cases the output of this data can be disabled using the
DISABLE_INTERNAL_VECTORS parameter for the VSXA device that carries the output driving port.
They can also be globally disabled using the VerilogDisableInternalVectors .OPTIONS setting.

Current Data

VSXA devices generate current vectors in the normal way for all connections that connect to analog
signals. These vectors are named as follows:

ref#port_name

130
SIMetrix Simulator Reference Manual

4.46. Verilog-HDL Interface (VSXA)

In the case of vector ports port_name is the name of the port appended with the index of the wire within
the port. For example, with the following Verilog definition:

module adder(in1, in2, out) ;

input [3:0] in1 ;
input [3:0] in2 ;
output [3:0] out ;

the port_names for the out port would be out0, out1, out2 and out3.

4.46.5 Module Cache

Operation

Before starting a simulation and also when creating a symbol from a Verilog design, SIMetrix needs to
gather some information about each Verilog module used in the circuit. It does this by starting a Verilog
simulation then interrogating the Verilog simulator via VPI. This process can take some time if there are
many Verilog modules in the circuit. To speed things up, SIMetrix caches the information obtained for
future use.

The cache mechanism calculates the MD5 checksum of the Verilog file and stores this with the cached
information in the cache file. When the cached information is required, SIMetrix calculates the MD5
checksum of the Verilog file and looks to see whether there is a cache item with that MD5 value. If there
is, it will use the cached data. If not it will retrieve the information via the Verilog simulator.

Location

The cache file is located at vldatapath/module-cache.sxche

Where vldatapath is a directory defined by the VlDataPath global option setting. This can be set using the
Set command typed at the command line. E.g.

Set VlDataPath=path

The default value of path is:

simetrix_app_data_dir/veriloghdl

simetrix_app_data_dir is the directory where SIMetrix configuration settings are stored and defaults to
C:\Users\login-name\AppData\Roaming. Refer to User’s Manual/Sundry Topics/Configuration
Settings/Application Data Directory for details about the Application Data path simetrix_app_data_dir.

Be aware that this file is created when a simulation is closed. This takes place when a new simulation is
started, when the Reset script command is executed or when the simulator process terminates.

Limitations

The cache mechanism only looks at the contents of the Verilog file referenced. It does not take account of
include files for example. However, the only information stored in the cache are the module name, names
and direction of the module ports and the names, types and default values of any parameters. It would be
ususual to store these items in an include file but of course this is perfectly legal.

If the top level ports or/and parameters for your Verilog design are nor defined in the main file but in an
include file, then you should either redesign the Verilog file or alternatively disable the cache for that
module.

The cache can be disabled by setting the DISABLE_MODULE_CACHE model parameter. Important:
the DISABLE_MODULE_CACHE parameter disables the creation of cached information; it does not

131
SIMetrix Simulator Reference Manual

4.47. NXP Compact Models

disable using cached information if it already exists. This is because the cache is read before model
parameters are read. You may wish to clear the cache altogether when setting this parameter. This can be
done from the front end with menu Verilog | Clear Verilog-HDL Module Info Cache.

The cache can also be globally disabled using the .OPTIONS setting VerilogDisableModuleCache.

4.47 NXP Compact Models

4.47.1 Introduction

SIMetrix supports a range of device models developed by NXP Semiconductor. These are available with
the Elite versions of SIMetrix

The table below shows the models available. Model statements should be in the form:

.model model_name model_type_name LEVEL=level_number parameters

E.g.

.model my_model nmos LEVEL=103 ...

defines a MOS 9 nmos device.

To instantiate the device line must start with the letter as defined in the Device Letter column in the table
below. The number of nodes must be within the range specified in the table.

4.47.2 SIMKIT Devices

The following table shows all available SIMKIT NXP models

Device Name Model
Type
Name

Device
Let-
ter

Max num
Terms.

Min num
Terms.

Level Description

mos903e_n nmos M 4 4 103 MOS 9
Electrical N
chan

mos903e_p pmos M 4 4 103 MOS 9
Electrical P
chan

mos903_n nmos M 4 4 203 MOS 9 Geom.
N chan

mos903_p pmos M 4 4 203 MOS 9 Geom.
P chan

mos903t_n nmos M 5 4 223 MOS 9
Thermal N
chan

mos903t_p pmos M 5 4 223 MOS 9
Thermal P
chan

bjt504_n npn Q 4 3 104 Mextram 4
term
NPN

132
SIMetrix Simulator Reference Manual

4.47. NXP Compact Models

Device Name Model
Type
Name

Device
Let-
ter

Max num
Terms.

Min num
Terms.

Level Description

bjt504_p pnp Q 4 3 104 Mextram 4
term
PNP

bjt504t_n npn Q 5 3 124 Mextram
Thermal
NPN

bjt504t_p pnp Q 5 3 124 Mextram
Thermal
PNP

bjt3500_n npn Q 4 3 304 BJT 3500
NPN

bjt3500_p pnp Q 4 3 304 BJT 3500
PNP

bjt3500t_n npn Q 5 3 324 BJT 3500
Thermal
NPN

bjt3500t_p pnp Q 5 3 324 BJT 3500
Thermal
PNP

bjt500_p pnp Q 4 3 200 BJT Level 500
Lateral
PNP

bjt500t_p pnp Q 5 3 220 BJT Level 500
Lateral PNP,
thermal

psp1020_n nmos M 4 4 902 PSP 1.02
nmos

psp1020_p pmos M 4 4 902 PSP 1.02
pmos

psp1021_n nmos M 4 4 912 PSP 1.02 nmos
binned
version

psp1021_p pmos M 4 4 912 PSP 1.02 pmos
binned
version

psp102e_n nmos M 4 4 802 PSP 1.02 nmos
electri-
cal

psp102e_p pmos M 4 4 802 PSP 1.02 pmos
electri-
cal

pspnqs1020_n nmos M 4 4 942 PSP 1.02 nmos,
non-quasi
static

133
SIMetrix Simulator Reference Manual

4.47. NXP Compact Models

Device Name Model
Type
Name

Device
Let-
ter

Max num
Terms.

Min num
Terms.

Level Description

pspnqs1020_p pmos M 4 4 942 PSP 1.02 pmos,
non-quasi
static

pspnqs1021_n nmos M 4 4 952 PSP 1.02 nmos,
non-quasi
static,
binned

pspnqs1021_p pmos M 4 4 952 PSP 1.02 pmos,
non-quasi
static,
binned

pspnqs102e_n nmos M 4 4 842 PSP 1.02 nmos,
non-quasi
static, electri-
cal

pspnqs102e_p pmos M 4 4 842 PSP 1.02 pmos,
non-quasi
static, electri-
cal

psp103_n nmos M 4 4 903 PSP 1.03
nmos

psp103_p pmos M 4 4 903 PSP 1.03
pmos

pspnqs103_n nmos M 4 4 943 PSP 1.03 nmos,
non-quasi-
static

pspnqs103_p pmos M 4 4 943 PSP 1.03 pmos,
non-quasi-
static

mos1102e_n nmos M 4 4 502 MOS 11, 1102
nmos, electri-
cal

mos1102e_p pmos M 4 4 502 MOS 11, 1102
pmos, electri-
cal

mos1102et_n nmos M 5 4 522 MOS 11, 1102
nmos,
electrical,
thermal

mos1102et_p pmos M 5 4 522 MOS 11, 1102
pmos,
electrical,
thermal

mos11020_n nmos M 4 4 602 MOS 11, 1102
nmos, geomet-
ric

134
SIMetrix Simulator Reference Manual

4.47. NXP Compact Models

Device Name Model
Type
Name

Device
Let-
ter

Max num
Terms.

Min num
Terms.

Level Description

mos11020_p pmos M 4 4 602 MOS 11, 1102
pmos, geomet-
ric

mos11020t_n nmos M 5 4 622 MOS 11, 1102
nmos,
geometric,
thermal

mos11020t_p pmos M 5 4 622 MOS 11, 1102
pmos,
geometric,
thermal

mos11021_n nmos M 4 4 612 MOS 11, 1102
nmos,
geometric,
binned

mos11021_p pmos M 4 4 612 MOS 11, 1102
pmos,
geometric,
binned

mos11021t_n nmos M 5 4 632 MOS 11, 1102
nmos,
geometric,
binned,
thermal

mos11021t_p pmos M 5 4 632 MOS 11, 1102
pmos,
geometric,
binned,
thermal

mos1101e_n nmos M 4 4 501 MOS 11, 1101
nmos, electri-
cal

mos1101e_p pmos M 4 4 501 MOS 11, 1101
pmos, electri-
cal

mos1101et_n nmos M 5 4 521 MOS 11, 1101
nmos,
electrical,
thermal

mos1101et_p pmos M 5 4 521 MOS 11, 1101
pmos,
electrical,
thermal

mos11010_n nmos M 4 4 601 MOS 11, 1101
nmos, geomet-
ric

135
SIMetrix Simulator Reference Manual

4.47. NXP Compact Models

Device Name Model
Type
Name

Device
Let-
ter

Max num
Terms.

Min num
Terms.

Level Description

mos11010_p pmos M 4 4 601 MOS 11, 1101
pmos, geomet-
ric

mos11010t_n nmos M 5 4 621 MOS 11, 1101
nmos,
geometric,
thermal

mos11010t_p pmos M 5 4 621 MOS 11, 1101
pmos,
geometric,
thermal

mos11011_n nmos M 4 4 611 MOS 11, 1101
nmos,
geometric,
binned

mos11011_p pmos M 4 4 611 MOS 11, 1101
pmos,
geometric,
binned

mos11011t_n nmos M 5 4 631 MOS 11, 1101
nmos,
geometric,
binned,
thermal

mos11011t_p pmos M 5 4 631 MOS 11, 1101
pmos,
geometric,
binned,
thermal

juncap d D 2 2 101 JUNCAP

juncap200 d D 2 2 102 JUNCAP
200

mos2002_n nmos M 4 4 1302 MOS Model 20
level 2002,
nmos

mos2002_p pmos M 4 4 1302 MOS model 20
level 2002,
pmos

mos2002e_n nmos M 4 4 1202 MOS Model 20
level 2002,
nmos, electri-
cal

mos2002e_p pmos M 4 4 1202 MOS Model 20
level 2002,
pmos, electri-
cal

136
SIMetrix Simulator Reference Manual

4.47. NXP Compact Models

Device Name Model
Type
Name

Device
Let-
ter

Max num
Terms.

Min num
Terms.

Level Description

mos2002t_n nmos M 5 4 1322 MOS Model 20
level 2002,
nmos,
thermal

mos2002t_p pmos M 5 4 1322 MOS Model 20
level 2002,
pmos,
thermal

mos2002et_n nmos M 5 4 1222 MOS Model 20
level 2002,
nmos,
electrical,
thermal

mos2002et_p pmos M 5 4 1222 MOS Model 20
level 2002,
pmos,
electrical,
thermal

mos3100_n nmos M 4 4 700 MOS Model
Level 3100,
nmos

mos3100_p pmos M 4 4 700 MOS Model
Level 3100,
pmos

mos3100t_n nmos M 5 4 720 MOS Model
Level 3100,
nmos,
thermal

mos3100t_p pmos M 5 4 720 MOS Model
Level 3100,
pmos,
thermal

mos40_n nmos M 4 4 400 MOS model
Level 40,
nmos

mos40_p pmos M 4 4 400 MOS model
Level 40,
pmos

mos40t_n nmos M 5 4 420 MOS model
Level 40, nmos,
thermal

mos40t_p pmos M 5 4 420 MOS model
Level 40, pmos,
thermal

137
SIMetrix Simulator Reference Manual

4.47. NXP Compact Models

4.47.3 Notes on SIMKIT Models

Binned Models

Binned models are not yet integrated with the library binning system. So, to use the binning features of
binned models, you will need to manually generate separate model names for each bin.

Real Time Noise

Some models do not fully implement real-time noise. Many MOS models include frequency dependent
gate noise and this is not included in real-time noise analyses. Also some models include correlated noise
which is also not included. In most cases these effects are small anyway and have little effect.

You can set this option in AC small-signal noise:
.options noMos9GateNoise

to disable the same effects in AC small signal noise. A comparison can then be made to estimate the effect
these noise sources may have in real-time noise. Although the option name suggests that it only applies to
MOS9, this does in fact work with all applicable models.

In the case of PSP 102 models, you can instead invoke the Verilog-A based model which fully supports all
noise effects in real-time noise analysis. See next section for details.

PSP 102

The PSP 102 nmos and pmos geometric models (level 902) are also available as level 1023. However the
two models are implemented differently. Level 902 is implemented through the SIMKIT interface. The
model code itself in this case is created using ADMS from the Verilog-A description. However, it seems
that the noise model for this is not created from the Verilog-A code and appears to have been hand coded.

The Level 1023 version is built entirely from the Verilog-A code using the SIMetrix Verilog-A compiler
but using a more advanced commercial C-compiler than the open source version supplied with SIMetrix.
This version has the benefit over the Simkit version that it fully supports real-time noise including
correlated effects and gate noise. It is however a little slower - typically about 5-10% compared to the
SIMKIT version.

We have done extensive side by side tests of both models and both give identical results to a high degree of
accuracy.

Older Models

Older “Philips Compact Models” (PCM) devices are no longer supported. Nearly all of the original PCM
devices have been replaced by Simkit devices that are functionally identical. The following devices are not
available in the Simkit library:

MOS 9 version 9.02 devices are no longer available, however, version 9.03 is fully backward compatible.
Version 9.03 is available in the Simkit library. Version 9.02 was previously accessed using levels 102 and
202. These level numbers now map to version 9.03. The only change in behaviour is that some new
version 9.03 parameters will be accepted correctly without error.

Mextram 5.03 is no longer available. Superseded by 5.04 but this is not directly compatible.

Diode level 200 is no longer available.

MOS 11 SIMetrix level 500/600 is no longer available. Superseded by 501/601. Currently no information
is available as to whether or not the new version is backward compatible.

MOS level 302 is no longer available.

138
SIMetrix Simulator Reference Manual

4.48. LTspice® Devices

4.48 LTspice® Devices

Some devices have been developed to allow compatibility with LTspice® models. In particular some
Op-amp models for the former Linear Technology Corporation are only available in a form that uses
special LTspice® devices. Some of these devices have been implemented in Verilog-A and are
incorporated in the standard SIMetrix product. (A Verilog-A license is not required to run these models).

The following table lists the devices available:

Device Name Details

OTA Axxx IN1P IN1N IN2P IN2N NC RAIL IOUT GND OTA parameters

SCHMITT Axxx INP INN NC1 NC2 NC3 OUTN OUTP GND SCHMITT
parameters

OR Axxx IN1 IN2 IN3 IN4 IN5 OUTN OUTP GND OR parameters

BUF Axxx IN1 IN2 IN3 IN4 IN5 OUTN OUTP GND BUF parameters

AND Axxx IN1 IN2 IN3 IN4 IN5 OUTN OUTP GND AND parameters

XOR Axxx IN1 IN2 IN3 IN4 IN5 OUTN OUTP GND XOR parameters

VARISTOR Axxx INP INN NC1 NC2 NC3 NC4 OUT GND SCHMITT parameters

IDEAL DIODE Diode model using any of the parameters RON, ROFF, VFWD, VREV,
RREV

VDMOS .MODEL VDMOS parameters

Extended
Capacitor

Enabled if any of parameters RSER, RPAR, CPAR, LSER, RLSHUNT or
NOISELESS are specified

Extended Inductor Enabled if any of parameters RSER, RPAR, CPAR or NOISELESS are
specified

Extended VCCS Enabled if VTO or DIR provided

Level 2 Switch Enabled with LEVEL=2 model parameter

Current source with
LOAD parameter

Enabled for fixed current sources if the parameter LOAD is specified. In this
mode the current source has a characteristic that is always passive and is
intended to be used as a load. Above 0.5V it behaves as a fixed constant current
source. Below 0.0 V it behaves as a resistor with a value of 0.25/ifixed.
Between 0.25 and 0.0, it follows a quadratic characteristic that transitions
smoothly between a pure current source and a pure resistance.

The devices above accessed using the ’A’ prefix letter have the possibility of being confused with XSpice
devices which also start with the letter ’A’. However, all of the special LTspice® devices have 8
connections whereas the largest number of scalar connections for any XSpice device is 7 (for the J-K
flip-flop). There are XSpice devices that have vector connections and for these it is possible to have 8
nodes and so these could be confused with LTspice® devices. Vector connections are enclosed with the
characters ’[’ and ’]’ so to avoid conflict, devices that include these characters in node names will not be
interpreted as LTspice® devices. The ’:’ character is also excluded as this delimits instance parameters for
XSpice devices.

In addition, the following devices have been extended to add new parameters.

139
SIMetrix Simulator Reference Manual

4.48. LTspice® Devices

Device Name Details

Arbitrary source New parameters CPAR, RPAR, X (see notes) and NOJACOB (non
functional)

Switch New parameters VSER, ILIMIT and NOISELESS

Resistor New parameter NOISELESS

Voltage source New parameter RSER

4.48.1 LTspice® Notes

Some additional features and changes have been made to enable LTspice® models to run correctly. These
are listed below

• Interpret the micro symbol µ as 1e-6. This has been implemented solely for compatibility with
LTspice; we do not recommend using this in SIMetrix schematics or netlists.

SIMetrix will recognise both ANSI and UTF-8 encodings of this symbol. Note that the ANSI
encoding is not universal. On some systems, in particular systems setup for Japanese, Chinese or
Korean languages, the ANSI micro symbol (B5h) will display as a different character with most text
editors. SIMetrix (and LTspice®) will still interpret the character as µ and scale the preceding value
accordingly. Finally, note that the UTF-8 encoding for the micro character (C2h B5h) is different to
the encoding for the greek letter µ (CEh BCh) but the two characters are visually indistinguishable.
SIMetrix will also recognise the UTF-8 encoding of greek µ as 1e-6.

• Arbitrary source X parameter. The X parameter in LTspice® is interpreted as the voltage across the
source. This requires the setting .options LTspiceCompatibility=1

• Allow unquoted .PARAM expressions. This requires the setting
.options LTspiceCompatibility=1

• dnlim and uplim functions implemented for arbitrary source expressions

• Capacitors defined using charge expressions in form Cxxx n1 n2 Q=expression

140
SIMetrix Simulator Reference Manual

5.1. Device Overview

Chapter 5

Digital/Mixed Signal Device Reference

5.1 Digital Device Overview

5.1.1 Common Parameters

A number of model parameters are common to most of the digital models. These are described below.

Family Parameters

These identify the logic family to which the input and outputs belong. See Logic families for a detailed
explanation. Most models have three family parameters:

Family name Description

in_family Specifies family for inputs. If omitted, the input family is specified by the
FAMILY parameter

out_family Specifies family for outputs. If omitted, the output family is specified by
the FAMILY parameter

family Default value for IN_FAMILY and OUT_FAMILY

Output Parameters

Parameter name Description

out_res This is used to calculate loading delay. It has dimensions of Ohms so is
referred to as a resistance. The additional loading delay is calculated by
multiplying OUT_RES by the total capacitative load detected on the node
to which the output connects.

min_sink Used to calculate static loading effects. This is the current that the device
is able to sink. Current flowing out of the pin is positive so this parameter
is usually negative. If the total sink load current is arithmetically smaller
(i.e. more negative) than this parameter then the output will be forced to
an UNKNOWN state. This is used to implement fan out limitations in
bipolar logic.

141
SIMetrix Simulator Reference Manual

5.2. And Gate

Parameter name Description

max_source Used to calculate static loading effects. This is the current that the device
is able to source. Current flowing out of the pin is positive. If the total
source load current is larger than this parameter then the output will be
forced to an UNKNOWN state. This is used to implement fan out
limitations in bipolar logic.

Input Parameters

Parameter name Description

sink_current Current that the input sinks. Positive current flows into the device so this
parameter is usually negative. The total of all the input sink currents are
added together when a node is in the logic ‘0’ state. If the total sink load
current is arithmetically smaller (i.e. more negative) than the MIN_SINK
parameter of the device driving the node, then it will be forced to an
UNKNOWN state. This is used to implement fan out limitations in bipolar
logic.

source_current Current that the input sources. Positive current flows into the device. The
total of all the input source currents are added together when a node is in
the logic ‘1’ state. If the total source load current is larger than the
MAX_SOURCE parameter of the device driving the node, then it will be
forced to an UNKNOWN state. This is used to implement fan out
limitations in bipolar logic.

5.1.2 Delays

Most digital devices have at least one model parameter that specifies a time delay. Unless otherwise noted,
all delays are inertial. This means that glitches shorter than the delay time will be swallowed and not
passed on. For example, the following waveforms show the input and output of a gate that has a
propagation delay of 10nS. The first pulse is only 5nS so does not appear at the output. The second pulse
is 20nS so therefore is present at the output delayed by 10nS.

The Buffer device has an optional stored delay (also known as transport delay) parameter that makes
possible the specification of pure delays.

5.2 And Gate

142
SIMetrix Simulator Reference Manual

5.2. And Gate

5.2.1 Netlist entry:

Axxxx [in_0 in_1 .. in_n] out model_name

5.2.2 Connection details

Name Description Flow Type Vector bounds

in Input in d, vector 2−∞
out Output out d n/a

5.2.3 Model format

.MODEL model_name d_and parameters

5.2.4 Model parameters

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 -∞
fall_delay Fall delay real 1nS 1e-12 -∞
input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope out_res 0−∞
open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.2.5 Device operation

• If the model parameter OPEN_C is false, The output will be at logic ‘0’ if either input is at logic ‘0’.
Otherwise, if any input is UNKNOWN, the output will be UNKNOWN. Otherwise the output will
be at logic ‘1’.

• If the model parameter OPEN_C is true the device will be open collector. In this case the output
logic state is always ‘0’. The state of the inputs instead determines the strength of the output. If
either input is at logic ‘0’ the output strength will be STRONG. Otherwise if any input is
UNKNOWN the output strength will be UNDETERMINED. Otherwise the output strength will be
HI-IMPEDANCE allowing a pull-up resistor to force it to the logic ‘1’ state.

143
SIMetrix Simulator Reference Manual

5.3. D-type Latch

5.3 D-type Latch

5.3.1 Netlist entry

Axxxx data enable set reset out nout model_name

5.3.2 Connection details

Name Description Flow Type

data Input data in d

enable Enable in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

5.3.3 Model format

.MODEL model_name d_dlatch parameters

5.3.4 Model parameters

Name Description Type Default Limits

data_delay Delay from data real 1nS 1e-12 −∞
enable_delay Delay from enable real 1nS 1e-12 −∞
set_delay Delay from set real 1nS 1e-12 −∞
reset_delay Delay from reset real 1nS 1e-12 −∞
ic Output initial state

0: logic ‘0’

1: logic ‘1’

2: UNKNOWN

integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 −∞

144
SIMetrix Simulator Reference Manual

5.3. D-type Latch

Name Description Type Default Limits

fall_delay Fall delay real 1nS 1e-12 −∞
data_load Data load value (F) real 1pF none

enable_load Enable load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos.

slope
real out_res 0−∞

out_res_neg Digital output res. neg.
slope

out_res 0−∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source
current

real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.3.5 Device Operation

The device is a level triggered latch with a single data input, complimentary outputs and active high
asynchronous set and reset. The operation of the device is illustrated in the following diagram:

The asynchronous inputs (set and reset) override the action of the enable and data lines.

145
SIMetrix Simulator Reference Manual

5.4. D-type Flip Flop

5.4 D-type Flip Flop

5.4.1 Netlist entry

Axxxx data clk set reset out nout model_name

5.4.2 Connection details

Name Description Flow Type

data Input data in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

5.4.3 Model format

.MODEL model_name d_dff parameters

5.4.4 Model parameters

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e-12 −∞
set_delay Delay from set real 1nS 1e-12 −∞
reset_delay Delay from reset real 1nS 1e-12 −∞
ic Output initial state

0: logic ‘0’

1: logic ‘1’

2: UNKNOWN

integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 −∞
fall_delay Fall delay real 1nS 1e-12 −∞

146
SIMetrix Simulator Reference Manual

5.5. Buffer

Name Description Type Default Limits

data_load Data load value (F) real 1pF none

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos.

slope
real out_res 0−∞

out_res_neg Digital output res. neg.
slope

out_res 0−∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source
current

real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.4.5 Device Operation

The device is an edge triggered D-type flip flop with active high asynchronous set and reset. The operation
of the device is illustrated by the following diagram:

5.5 Buffer

147
SIMetrix Simulator Reference Manual

5.5. Buffer

5.5.1 Netlist entry

Axxxx in out model_name

5.5.2 Connection details

Name Description Flow Type

in Input in d

out Output out d

5.5.3 Model format

.MODEL model_name d_buffer parameters

5.5.4 Model parameters

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 −∞
fall_delay Fall delay real 1nS 1e-12 −∞
stored_delay Stored delay (overrides rise_delay and

fall_delay)
real 0 0−∞

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope out_res 0−∞
open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

open_e Open emitter output boolean FALSE none

5.5.5 Device Operation

This device is a simple buffer with a single input and output. It can optionally be specified to have an open
collector (open_c parameter) or open emitter (open_e parameter) output. Further, if the stored_delay
parameter is specified, the device will act as a pure delay. This means that it will pass pulses that are
shorter than the delay time whereas normally (delay specified by rise_delay and fall_delay) such pulse
would be swallowed (stored_delay is also known as transport delay).

148
SIMetrix Simulator Reference Manual

5.6. Frequency Divider

The following table describes the device operation in detail

OPEN_C
parameter

OPEN_E
parameter

Input Output state Output strength

FALSE FALSE 0 0 STRONG

FALSE FALSE 1 1 STRONG

FALSE FALSE UNKNOWN UNKNOWN STRONG

FALSE TRUE 0 0 HI-IMPEDANCE

FALSE TRUE 1 1 STRONG

FALSE TRUE UNKNOWN UNKNOWN UNDETERMINED

TRUE FALSE 0 0 STRONG

TRUE FALSE 1 0 HI-IMPEDANCE

TRUE FALSE UNKNOWN 0 UNDETERMINED

TRUE TRUE 0 1 HI-IMPEDANCE

TRUE TRUE 1 0 HI-IMPEDANCE

TRUE TRUE UNKNOWN UNKNOWN UNDETERMINED

Note the difference between open emitter and open collector operation. These modes have been designed
to be as close to as possible to real devices, in particular their behaviour into an open circuit. An open
emitter output, when switching from high to low is likely to follow the voltage on the device’s base due to
the base-emitter capacitance so the output state follows the input state. An open collector (or open drain)
output on the other hand will remain in the low state when its input switches.

5.6 Frequency Divider

5.6.1 Netlist entry

Axxxx freq_in freq_out model_name

5.6.2 Connection details

Name Description Flow Type

freq_in Frequency input in d

freq_out Frequency output out d

149
SIMetrix Simulator Reference Manual

5.6. Frequency Divider

5.6.3 Model format

.MODEL model_name d_fdiv parameters

5.6.4 Model parameters

Name Description Type Default Limits

div_factor Divide factor integer 2 1−∞
high_cycles Number of high clock cycles integer 1 1−∞
i_count Output initial count value integer 0 0−∞
rise_delay Rise delay real 1nS 1e-12 −∞
fall_delay Fall delay real 1nS 1e-12 −∞
freq_in_load Freq_in load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope out_res 0−∞
min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.6.5 Device Operation

This device is a positive edge triggered frequency divider. Three model parameters allow arbitrary
definition of the divide ratio, output duty cycle, output phase and initial delay. Operation of the frequency
divider is illustrated by the following diagram which shows the output of a frequency divider with a
DIV_FACTOR of 10 and two alternative values of HIGH_CYCLES.

The above was carried out with I_COUNT=0. I_COUNT is the initial value of the internal counter. The
output first goes high when it attains a value of 1 or 1+DIVIDE_RATIO so when I_COUNT is zero (the

150
SIMetrix Simulator Reference Manual

5.8. Digital Pulse

default) the output first goes high after the first rising edge. If I_COUNT is set to 5 the output first goes
high after the 6th rising edge and if I_COUNT is -20, the 21st rising edge.

5.7 Digital Initial Condition

5.7.1 Netlist entry

Axxxx out model_name

5.7.2 Connection details

Name Description Flow Type

out Output out d

5.7.3 Model format

.MODEL model_name d_init parameters

5.7.4 Model parameters

Name Description Type Default Limits

ic Initial state integer 0 none

is Initial strength 1 = STRONG 0 = RESISTIVE integer 1 none

out_family Output logic family string UNIV none

5.7.5 Device Operation

This device has the defined initial state (IC parameter) and initial strength (IS parameter) during the DC
operating point solution, then reverts to HI-IMPEDANCE for the remainder of the analysis.

5.8 Digital Pulse

5.8.1 Netlist entry

Axxxx out model_name : parameters

5.8.2 Connection details

Name Description Flow Type

out Output out d

151
SIMetrix Simulator Reference Manual

5.9. Digital Signal Source

5.8.3 Instance parameters

Name Description Type

period Pulse period real

delay Delay real

duty Duty cycle real

width Pulse width real

open_out Open emitter output boolean

5.8.4 Model format

.MODEL model_name d_pulse parameters

5.8.5 Model parameters

Name Description Type Default Limits

duty Duty cycle real 0.5 1e-06 - 0.999999

delay Initial delay real 0 0−∞
period Period. If zero, a single pulse will be

output
real 1µS 1e-12 −∞

width Pulse width (overrides duty if
specified)

real period * duty 0−∞

open_out Open emitter output boolean FALSE none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope out_res 0−∞
min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

5.8.6 Device Operation

This device supplies a repetitive or single pulse of defined period, delay and width. Optionally, the device
may be specified to have an open emitter output allowing several pulse sources to be wire OR’ed to create
complex pulses. All 5 main .MODEL parameters may also be specified on the device line as instance
parameters in which case they override any values specified in the .MODEL statement.

If OPEN_OUT is specified and true, a pull down resistor must be connected to the output.

5.9 Digital Signal Source

152
SIMetrix Simulator Reference Manual

5.9. Digital Signal Source

5.9.1 Netlist entry

Axxxx [out_0 out_1 .. out_n] model_name

5.9.2 Connection details

Name Description Flow Type

out Output out d, vector

5.9.3 Model format

.MODEL model_name d_source parameters

5.9.4 Model parameters

Name Description Type Default Limits

input_file Digital input vector filename string none none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope out_res 0−∞
min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

5.9.5 Device Operation

The digital signal source provides a multi bit arbitrary digital signal defined in a file.

5.9.6 File Format

The file is in ASCII format and is in the form of a table each row being on a new line. The first column
defines the time values while the entries in the remaining columns define the output value for each of the
outputs. So the total number of columns must be the number of outputs plus one. The output values must
appear in the same order as the outputs in the netlist entry. So, the values for out_0 will be in column 2,
out_1 in column 3 etc.

The file may include blank lines and comment lines beginning with a ‘*’.

The output values must specify the state as well as the strength using the following codes:

Code State-Strength

0S LOW-STRONG

1S HIGH-STRONG

153
SIMetrix Simulator Reference Manual

5.9. Digital Signal Source

Code State-Strength

US UNKNOWN-STRONG

0R LOW-RESISTIVE

1R HIGH-RESISTIVE

UR UNKNOWN-RESISTIVE

0Z LOW-HI-Z

1Z HIGH-HI-Z

UZ UNKNOWN-HI-Z

0U LOW-UNDETERMINED

1U HIGH-UNDETERMINED

UU UNKNOWN-UNDETERMINED

Note, these codes are not case sensitive.

5.9.7 Example

The following file:

* This is an example source file
0.0 0s 0s 0r 1s
1u 0s 0s 0r 0z
2u 0s 0s 1r 0z
5u 1s 0s 1r 0z
22e-6 1s 1s 1r 0z
50u 0s 1s 1r 0z
60u 0s 1s 1r 0z
70u 0s 1s 1r 0z
80u 0s 1s 1r 0z
90u Us Us Ur 0s

and this circuit:

Produces the following waveforms

154
SIMetrix Simulator Reference Manual

5.10. Inverter

An error will result if the file fails in any way to comply with the format. There must be the exact number
of entries in each row and the time values must be monotonic. Totally blank lines or lines containing only
white space are permitted but any other non-comment line not complying with the format will fail.

5.10 Inverter

5.10.1 Netlist entry

Axxxx in out model_name

5.10.2 Connection details

Name Description Flow Type

in Input in d

out Output out d

5.10.3 Model format

.MODEL model_name d_inverter parameters

5.10.4 Model parameters

155
SIMetrix Simulator Reference Manual

5.11. JK Flip Flop

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 −∞
fall_delay Fall delay real 1nS 1e-12 −∞
input_load Input load value (F) real 1pF none

family Logic family string HC none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope out_res 0−∞
open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.10.5 Device Operation

If the OPEN_C parameter is not specified or is FALSE, this device simply inverts the state of its input. I.e.
if the input is logic ‘0’ the output will be logic ‘1’ and vice-versa. If the input is UNKNOWN the output
will also be UNKNOWN.

If OPEN_C is TRUE, the output state is always at logic ‘0’ and the input determines its strength. If the
input is at logic ‘1’ the output strength is STRONG and if it is at logic ‘0’ the output strength is
HI-IMPEDANCE. The output strength will be UNDETERMINED if the input is UNKNOWN.

5.11 JK Flip Flop

5.11.1 Netlist entry

Axxxx j k clk set reset out nout model_name

5.11.2 Connection details

Name Description Flow Type

j J input in d

k K input in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

156
SIMetrix Simulator Reference Manual

5.11. JK Flip Flop

5.11.3 Model format

.MODEL model_name d_jkff parameters

5.11.4 Model parameters

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e-12 −∞
set_delay Delay from set real 1nS 1e-12 0−∞
reset_delay Delay from reset real 1nS 1e-12 0−∞
ic Output initial state integer 0 0− 2

rise_delay Rise delay real 1nS 1e-12 0−∞
fall_delay Fall delay real 1nS 1e-12 0−∞
jk_load J,k load values (F) real 1pF none

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope out_res 0−∞
min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.11.5 Device Operation

The following circuit and graph illustrate the operation of this device:

157
SIMetrix Simulator Reference Manual

5.11. JK Flip Flop

The following table describes the operation of the device when both inputs are at known states: The output
can only change on a positive edge of the clock.

J input K input Output

0 0 No change

0 1 0

1 0 1

1 1 toggle

When either input is UNKNOWN, the situation is more complicated. There are some circumstances when
a known state can be clocked to the output even if one of the inputs is unknown. The following table
describes the operation for all possible input states. X means UNKNOWN.

158
SIMetrix Simulator Reference Manual

5.12. Arbitrary Logic Block

J input K input old output new output

0 0 0 0

0 0 1 1

0 0 X X

0 1 0 0

0 1 1 0

0 1 X 0

0 X 0 0

0 X 1 X

0 X X X

1 0 0 1

1 0 1 1

1 0 X 1

1 1 0 1

1 1 1 0

1 1 X X

1 X 0 1

1 X 1 X

1 X X X

X 0 0 X

X 0 1 1

X 0 X X

X 1 0 X

X 1 1‘ 0

X 1 X X

X X 0 X

X X 1 X

X X X X

5.12 Arbitrary Logic Block

5.12.1 Netlist entry

Axxxx [in_0 in_1 .. in_n] [out_0 out_1 .. out_n]
+ model_name : parameters

5.12.2 Connection details

Name Description Flow Type

in Input in d, vector

out Output out d, vector
159

SIMetrix Simulator Reference Manual

5.12. Arbitrary Logic Block

5.12.3 Instance Parameters

Name Description Type

trace_file Trace file string

user User device params real vector

5.12.4 Model format

.MODEL model_name d_logic_block parameters

5.12.5 Model parameters

Name Description Type Default Limits Vector
bounds

file Definition file name string none none n/a

def Definition string none none n/a

out_delay Default output delay real 1n 1p −∞ n/a

reg_delay Default internal register delay real 1n 0−∞ n/a

setup_time Default level triggered setup time real 0 0−∞ n/a

hold_time Default edge triggered hold time real 0 0−∞ n/a

min_clock Default minimum clock width real 0 0−∞ n/a

trace_file Trace log file string none n/a

user User defined parameters real vector none none none

user_scale Scale of user values real 1 0−∞ n/a

input_load Input load value (F) real 1p none n/a

family Logic family string UNIV none n/a

in_family Input logic family string UNIV none n/a

out_family Output logic family string UNIV none n/a

out_res Digital output resistance real 100 0−∞ n/a

out_res_pos Digital output res. pos. slope real out_res 0−∞ n/a

out_res_neg Digital output res. neg. slope out_res 0−∞ n/a

sink_current Input sink current real 0 none n/a

source_current Input source current real 0 none n/a

5.12.6 Device Operation

See Arbitrary Logic Block - User Defined Models.

160
SIMetrix Simulator Reference Manual

5.13. Nand Gate

5.13 Nand Gate

5.13.1 Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

5.13.2 Connection details

Name Description Flow Type Vector bounds

in Input in d, vector 2−∞
out Output out d n/a

5.13.3 Model format

.MODEL model_name d_nand parameters

5.13.4 Model parameters

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 −∞
fall_delay Fall delay real 1nS 1e-12 −∞
input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope out_res 0−∞
open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.13.5 Device operation

• If the model parameter OPEN_C is false, The output will be at logic ‘1’ if either input is at logic ‘0’.
Otherwise, if any input is UNKNOWN, the output will be UNKNOWN. Otherwise the output will
be at logic ‘0’.

• If the model parameter OPEN_C is true the device will be open collector. In this case the output
logic state is always ‘0’. The state of the inputs instead determines the strength of the output. If

161
SIMetrix Simulator Reference Manual

5.14. Nor Gate

either input is at logic ‘0’ the output strength will be HI-IMPEDANCE allowing a pull-up resistor to
force it to the logic ‘1’ state. Otherwise if any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be STRONG.

5.14 Nor Gate

5.14.1 Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

5.14.2 Connection details

Name Description Flow Type Vector bounds

in Input in d, vector 2−∞
out Output out d n/a

5.14.3 Model format

.MODEL model_name d_nor parameters

5.14.4 Model parameters

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 −∞
fall_delay Fall delay real 1nS 1e-12 −∞
input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope real out_res 0−∞
open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

162
SIMetrix Simulator Reference Manual

5.15. Open-Collector Buffer

5.14.5 Device operation

• If the model parameter OPEN_C is false, The output will be at logic ‘0’ if either input is at logic ‘1’.
Otherwise, if any input is UNKNOWN, the output will be UNKNOWN. Otherwise the output will
be at logic ‘1’.

• If the model parameter OPEN_C is true the device will be open collector. In this case the output
logic state is always ‘0’. The state of the inputs instead determines the strength of the output. If
either input is at logic ‘1’ the output strength will be STRONG. Otherwise if any input is
UNKNOWN the output strength will be UNDETERMINED. Otherwise the output strength will be
HI-IMPEDANCE allowing a pull-up resistor to force it to the logic ‘1’ state.

5.15 Open-Collector Buffer

5.15.1 Netlist entry

Axxxx in out model_name

5.15.2 Connection details

Name Description Flow Type

in Input in d

out Output out d

5.15.3 Model format

.MODEL model_name d_open_c parameters

5.15.4 Model parameters

Name Description Type Default Limits

open_delay Open delay real 1nS 1e−12 −∞
fall_delay Fall delay real 1nS 1e−12 −∞
input_load Input load value (F) real 1pF none

5.15.5 Device Operation

This device is included for compatibility with other XSPICE products. It is recommended that you use the
digital buffer device (see Buffer) for new designs as this supports the additional common parameters such
as static input loads and families.

The logic description for the open-collector buffer is described by the following table

163
SIMetrix Simulator Reference Manual

5.16. Open-Emitter Buffer

Input Output state Output strength

0 0 STRONG

1 1 HI-IMPEDANCE

UNKNOWN UNKNOWN UNDETERMINED

5.16 Open-Emitter Buffer

5.16.1 Netlist entry

Axxxx in out model_name

5.16.2 Connection details

Name Description Flow Type

in Input in d

out Output out d

5.16.3 Model format

.MODEL model_name d_open_e parameters

5.16.4 Model parameters

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e−12 −∞
open_delay Open delay real 1nS 1e−12 −∞
input_load Input load value (F) real 1pF none

5.16.5 Device Operation

This device is included for compatibility with other XSPICE products. It is recommended that you use the
digital buffer device (see Buffer) for new designs as this supports the additional common parameters such
as static input loads and families.

The logic description for the open-collector buffer is described by the following table

Input Output state Output strength

0 0 HI-IMPEDANCE

1 1 STRONG

164
SIMetrix Simulator Reference Manual

5.17. Or Gate

Input Output state Output strength

UNKNOWN UNKNOWN UNDETERMINED

5.17 Or Gate

5.17.1 Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

5.17.2 Connection details

Name Description Flow Type Vector bounds

in Input in d, vector 2−∞
out Output out d n/a

5.17.3 Model format

.MODEL model_name d_or parameters

5.17.4 Model parameters

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e−12 −∞
fall_delay Fall delay real 1nS 1e−12 −∞
input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope real out_res 0−∞
open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

165
SIMetrix Simulator Reference Manual

5.19. Pullup Resistor

5.17.5 Device operation

• If the model parameter OPEN_C is false, The output will be at logic ‘1’ if either input is at logic ‘1’.
Otherwise, if any input is UNKNOWN, the output will be UNKNOWN. Otherwise the output will
be at logic ‘0’.

• If the model parameter OPEN_C is true the device will be open collector. In this case the output
logic state is always ‘0’. The state of the inputs instead determines the strength of the output. If
either input is at logic ‘1’ the output strength will be HI-IMPEDANCE allowing a pull-up resistor to
force it to the logic ‘1’ state. Otherwise if any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be STRONG.

5.18 Pulldown Resistor

5.18.1 Netlist entry

Axxxx out model_name

5.18.2 Connection details

Name Description Flow Type

out Output out d

5.18.3 Model format

.MODEL model_name d_pulldown parameters

5.18.4 Model parameters

Name Description Type Default Limits

load Load value (F) real 0 none

strong Strong output boolean FALSE none

out_family Output logic family string UNIV none

5.18.5 Device Operation

This is a single terminal device that can provide either a RESISTIVE or STRONG logic ‘0’. When
resistive it can be used for wire-OR connected open emitter outputs. If STRONG is specified (by the
STRONG parameter) its main application is as a digital ground connection.

5.19 Pullup Resistor

166
SIMetrix Simulator Reference Manual

5.20. Random Access Memory

5.19.1 Netlist entry

Axxxx out model_name

5.19.2 Connection details

Name Description Flow Type

out Output out d

5.19.3 Model format

.MODEL model_name d_pullup parameters

5.19.4 Model parameters

Name Description Type Default Limits

load Load value (F) real 0 none

strong Strong output boolean FALSE none

out_family Output logic family string UNIV none

5.19.5 Device Operation

This is a single terminal device that can provide either a RESISTIVE or STRONG logic ‘1’. When
resistive it can be used for wire-AND connected open collector outputs. If STRONG is specified (by the
STRONG parameter) its main application is as a digital VCC connection.

5.20 Random Access Memory

5.20.1 Netlist entry

Axxxx [data_in_0 data_in_1 .. data_in_n] [data_out_0 data_out_1 ..
+ data_out_n] [address_0 address_1 .. address_n] write_en
+ [select_0 select_1 .. select_n] model_name

5.20.2 Connection details

Name Description Flow Type Vector bounds

data_in Data input line(s) in d, vector 1−∞
data_out Data output line(s) out d, vector 1−∞
address Address input line(s) in d, vector 1−∞
write_en Write enable in d n/a

167
SIMetrix Simulator Reference Manual

5.21. Set-Reset Flip-Flop

Name Description Flow Type Vector bounds

select Chip select line(s) in d, vector 1 - 16

5.20.3 Model format

.MODEL model_name d_ram parameters

5.20.4 Model parameters

Name Description Type Default Limits

select_value Decimal active value for select line comparison integer 1 0 - 32767

ic Initial bit state @ DC integer 2 0 - 2

read_delay Read delay from address/select/write_en active real 1.00E-07 1e−12 −∞
data_load Data_in load value (F) real 1pF none

address_load Address line load value (F) real 1pF none

select_load Select load value (F) real 1pF none

enable_load Enable line load value (F) real 1pF none

5.20.5 Device Operation

This device is provided for compatibility with other XSPICE products and is not recommended for new
designs. In some circumstances, this device can consume large quantities of system (i.e. your PC’s) RAM
as it uses an inefficient method of storing state history. RAM’s can also be implemented using the arbitrary
logic block (see Arbitrary Logic Block - User Defined Models) which is much more efficient. An example
of a simple 256X8 RAM can be found amongst the supplied example circuits
(Examples/ALB_Examples/RAM.sxsch and RAM.ldf).

5.21 Set-Reset Flip-Flop

5.21.1 Netlist entry

Axxxx s r clk set reset out nout model_name

5.21.2 Connection details

Name Description Flow Type

s S input in d

r R input in d

clk Clock in d

set Asynchronous set in d

168
SIMetrix Simulator Reference Manual

5.21. Set-Reset Flip-Flop

Name Description Flow Type

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

5.21.3 Model format

.MODEL model_name d_srff parameters

5.21.4 Model parameters

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e−12 −∞
set_delay Delay from set real 1nS 1e−12 −∞
reset_delay Delay from reset real 1nS 1e−12 −∞
ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e−12 −∞
fall_delay Fall delay real 1nS 1e−12 −∞
sr_load S,r load values (F) real 1pF none

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope real out_res 0−∞
open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.21.5 Device Operation

The SR flip flop is similar to a JK flip flop except that the output is UNKNOWN when both S and R inputs
are high. In a JK the output toggles in the same circumstances.

The following table describes the operation of the device when both inputs are at known states: The output
can only change on a positive edge on the clock.

169
SIMetrix Simulator Reference Manual

5.21. Set-Reset Flip-Flop

S input R input Output

0 0 No change

0 1 0

1 0 1

1 1 UNKNOWN

When either input is UNKNOWN, the situation is more complicated. There are some circumstances when
a known state can be clocked to the output even if one of the inputs is unknown. The following table
describes the operation for possible input states. X means UNKNOWN.

S input R input old output new output

0 0 0 0

0 0 1 1

0 0 X X

0 1 0 0

0 1 1 0

0 1 X 0

0 X 0 0

0 X 1 X

0 X X X

1 0 0 1

1 0 1 1

1 0 X 1

1 1 0 X

1 1 1 X

1 1 X X

1 X 0 X

1 X 1 X

1 X X X

X 0 0 X

X 0 1 1

X 0 X X

X 1 0 X

X 1 1‘ X

X 1 X X

X X 0 X

X X 1 X

X X X X

170
SIMetrix Simulator Reference Manual

5.22. SR Latch

5.22 SR Latch

5.22.1 Netlist entry

Axxxx s r enable set reset out nout model_name

5.22.2 Connection details

Name Description Flow Type

s S input in d

r R input in d

enable Enable in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

5.22.3 Model format

.MODEL model_name d_srlatch parameters

5.22.4 Model parameters

Name Description Type Default Limits

sr_delay Delay from s or r input change real 1nS 1e−12 −∞
enable_delay Delay from clk real 1nS 1e−12 −∞
set_delay Delay from set real 1nS 1e−12 −∞
reset_delay Delay from reset real 1nS 1e−12 −∞
ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e−12 −∞
fall_delay Fall delay real 1nS 1e−12 −∞
sr_load S & r load values (F) real 1pF none

enable_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope real out_res 0−∞

171
SIMetrix Simulator Reference Manual

5.23. State Machine

Name Description Type Default Limits

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.22.5 Device Operation

This device is identical to the SR flip flop except that it is level not edge triggered. That is the output may
change whenever the enable input is high.

5.23 State Machine

5.23.1 Netlist entry

Axxxx [in_0 in_1 .. in_n] clk reset [out_0 out_1 .. out_n] model_name

5.23.2 Connection details

Name Description Flow Type Vector bounds

in Input in d, vector none

clk Clock in d n/a

reset Reset in d n/a

out Output out d, vector 1 - no upper bound

5.23.3 Model format

.MODEL model_name d_state parameters

5.23.4 Model parameters

Name Description Type Default Limits

clk_delay Delay from CLK real 1nS none

reset_delay Delay from reset real 1nS none

state_file State transition specification file name string none none

reset_state Default state on RESET & at DC integer 0 none

input_load Input loading capacitance (F) real 1pF none

clk_load Clock loading capacitance (F) real 1pF none

reset_load Reset loading capacitance (F) real 1pF none

172
SIMetrix Simulator Reference Manual

5.23. State Machine

Name Description Type Default Limits

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

5.23.5 File Syntax

The following is a formal description of the state machine file syntax using Backus-Naur form (BNF). ‘‘
and ‘’ mean “zero or more” of the enclosed items.

state_machine_def :: state_def state_def

state_def :: header_line continuation_line

header_line :: STATENUM outputs inputs SEPARATOR STATE_DEST

continuation_line :: inputs SEPARATOR STATE_DEST

outputs :: OUTPUT_VALUE OUTPUT_VALUE

inputs :: INPUT_VALUE INPUT_VALUE

STATENUM :: 0 based integer indicating state number.

SEPARATOR :: Any sequence of characters but not whitespace. ‘->’ is conventional

STATE_DESTINATION :: integer indicating state number.

OUTPUT_VALUE :: two digit sequence to define one of the 12 output states. First character can be 0, 1
or U. Second character can be s, r, z or u for ‘strong’, ‘resistive’, ‘high-z’, and ‘undefined’ respectively.

INPUT_VALUE :: 0, 1, x, or X

The idea is to have N state_def ’s where N is the number of states. Each state_def has one header_line and
a number of following continuation_lines. Both define the destination state for a given combination of
inputs. The header_line additionally defines the state being defined and the output value for that state.
Header lines and continuation lines are distinguished by counting the tokens. The system does currently
not appear to fail gracefully if this is wrong. A header_line should have (num_inputs+num_outputs+3)
tokens and a continuation_line should have (num_inputs+2).

The number of inputs and outputs is defined in the netlist line which is in the form:

Axxx [inputs] clk reset [outputs] modelname

5.23.6 Notes

Currently this model is unsupported as it has not undergone testing or analysis. It is part of the original
XSPICE system and should be compatible with other implementations but this cannot be guaranteed.

The following is an example of a state transition specification file

* This is a simple example of a state machine state file

* It is a 2 bit up down counter with synchronous reset

*Present Outputs Inputs State destination

*State for state (reset, up/down)
0 0S 0S 0 0 -> 3

0 1 -> 1
1 0 -> 0
1 1 -> 0

173
SIMetrix Simulator Reference Manual

5.24. Toggle Flip Flop

1 0S 1S 0 0 -> 0
0 1 -> 2
1 0 -> 0
1 1 -> 0

2 1S 0S 0 0 -> 1
0 1 -> 3
1 0 -> 0
1 1 -> 0

3 1S 1S 0 0 -> 2
0 1 -> 0
1 0 -> 0
1 1 -> 0

See Examples/Digital_Devices/state_updown.sxsch

5.24 Toggle Flip Flop

5.24.1 Netlist entry

Axxxx t clk set reset out nout model_name

5.24.2 Connection details

Name Description Flow Type

t Toggle input in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

5.24.3 Model format

.MODEL model_name d_tff parameters

5.24.4 Model parameters

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e−12 −∞
set_delay Delay from set real 1nS 1e−12 −∞
reset_delay Delay from reset real 1nS 1e−12 −∞
ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e−12 −∞
fall_delay Fall delay real 1nS 1e−12 −∞
t_load Toggle load value (F) real 1pF none

174
SIMetrix Simulator Reference Manual

5.24. Toggle Flip Flop

Name Description Type Default Limits

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope real out_res 0−∞
min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.24.5 Device Operation

The operation of the toggle flip flop is illustrated by the following diagrams. When the T input is high, the
output toggles on each rising edge of the clock. If the T input is UNKNOWN the output will be
UNKNOWN.

175
SIMetrix Simulator Reference Manual

5.25. Tri-State Buffer

5.25 Tri-State Buffer

5.25.1 Netlist entry

Axxxx in enable out model_name

5.25.2 Connection details

Name Description Flow Type

in Input in d

enable Enable in d

out Output out d

5.25.3 Model format

.MODEL model_name d_tristate parameters

5.25.4 Model parameters

Name Description Type Default Limits

delay Delay real 1nS 1e−12 −∞
input_load Input load value (F) real 1pF none

176
SIMetrix Simulator Reference Manual

5.26. Exclusive NOR Gate

Name Description Type Default Limits

enable_load Enable load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope real out_res 0−∞
min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.25.5 Device Operation

This is a three terminal buffer device. The output state is equal to the input state and the output strength is
determined by the enable input as follows:

Enable Output Strength

0 HI-IMPEDANCE

1 STRONG

UNKNOWN UNDETERMINED

5.26 Exclusive NOR Gate

5.26.1 Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

5.26.2 Connection details

Name Description Flow Type Vector bounds

in Input in d, vector 2−∞
out Output out d n/a

5.26.3 Model format

.MODEL model_name d_xnor parameters

177
SIMetrix Simulator Reference Manual

5.27. Exclusive OR Gate

5.26.4 Model parameters

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e−12 −∞
fall_delay Fall delay real 1nS 1e−12 −∞
input_load Input load value (pF) real 1 0−∞
family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope real out_res 0−∞
open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.26.5 Device Operation

• If the OPEN_C parameter is FALSE, the output is at logic ‘1’ if an even number of inputs are at
logic ‘1’. If any input is UNKNOWN the output will be UNKNOWN, otherwise the output will be
at logic ‘0’.

• If the model parameter OPEN_C is true the device will be open collector. In this case the output
logic state is always ‘0’. The state of the inputs instead determines the strength of the output. If n
even number of inputs are at logic ‘1’ the output strength will be HI-IMPEDANCE allowing a
pull-up resistor to force it to the logic ‘1’ state. If any input is UNKNOWN the output strength will
be UNDETERMINED. Otherwise the output strength will be STRONG.

5.27 Exclusive OR Gate

5.27.1 Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

5.27.2 Connection details

Name Description Flow Type Vector bounds

in Input in d, vector 2−∞
out Output out d n/a

178
SIMetrix Simulator Reference Manual

5.28. Analog-Digital Converter

5.27.3 Model format

.MODEL model_name d_xor parameters

5.27.4 Model parameters

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e−12 −∞
fall_delay Fall delay real 1nS 1e−12 −∞
input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope real out_res 0−∞
open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.27.5 Device Operation

• If the OPEN_C parameter is FALSE, the output is at logic ‘1’ if an odd number of inputs are at logic
‘1’. If any input is UNKNOWN the output will be UNKNOWN, otherwise the output will be at
logic ‘0’.

• If the model parameter OPEN_C is true the device will be open collector. In this case the output
logic state is always ‘0’. The state of the inputs instead determines the strength of the output. If an
odd number of inputs are at logic ‘1’ the output strength will be HI-IMPEDANCE allowing a
pull-up resistor to force it to the logic ‘1’ state. If any input is UNKNOWN the output strength will
be UNDETERMINED. Otherwise the output strength will be STRONG.

5.28 Analog-Digital Converter

5.28.1 Netlist entry

Axxxx analog_in clock_in [data_out_0 data_out_1 .. data_out_n]
+ data_valid model_name

5.28.2 Connection details

179
SIMetrix Simulator Reference Manual

5.28. Analog-Digital Converter

Name Description Flow Type Allowed types Vector bounds

analog_in Analog input in v v, vd, i, id n/a

clock_in Clock input in d d n/a

data_out Data output out d, vector d 1 - 32

data_valid Data valid output out d d n/a

5.28.3 Model format

.MODEL model_name ad_converter parameters

5.28.4 Model parameters

Name Description Type Default Limits

input_offset Offset voltage real 0 none

input_range Input full scale signal range real 1 none

twos_complement Use 2’s complement output. (default -
offset binary)

boolean FALSE none

convert_time Total conversion time real 1 µ S 0−∞
min_clock Minimum clock period real 500n 0−∞
data_valid_delay Data valid inactive time real 100n 0−∞
in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

family Logic family string UNIV none

input_load Input load real 1pF 0−∞
out_res Digital output resistance real 100 0−∞
out_res_pos Digital output res. pos. slope real out_res 0−∞
out_res_neg Digital output res. neg. slope real out_res 0−∞
min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.28.5 Device Operation

This is a 1-32 bit analog to digital converter. The operation of this device is illustrated by the following
diagrams:

180
SIMetrix Simulator Reference Manual

5.28. Analog-Digital Converter

181
SIMetrix Simulator Reference Manual

5.29. Analog-Digital Interface Bridge

Conversion timings.

The ADC starts the conversion at the rising edge of the clock. The analog input signal is also sampled at
this point. The output data changes in response to this, CONVERT_TIME seconds later. At the same time
the data_valid output goes low (inactive) then high again after a delay equal to DATA_VALID_DELAY. It
is possible to start a new conversion before the previous conversion is complete provided it is started later
than MIN_CLOCK seconds after the previous conversion was started. MIN_CLOCK must always be less
than CONVERT_TIME. If the MIN_CLOCK specification is violated, the conversion will not start.

5.29 Analog-Digital Interface Bridge

5.29.1 Netlist entry

Axxxx in out model_name

5.29.2 Connection details

Name Description Flow Type

in Input inout g

out Output out d

5.29.3 Model format

.MODEL model_name adc_bridge parameters

5.29.4 Model parameters

Name Description Type Default Limits

in_low Maximum 0-valued analog input real 0.1 none

in_high Minimum 1-valued analog input real 0.9 none

182
SIMetrix Simulator Reference Manual

5.29. Analog-Digital Interface Bridge

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e−12 −∞
fall_delay Fall delay real 1nS 1e−12 −∞
time_tol Threshold time tolerance real 100pS 1e−12 −∞
out_low Used to calculate reflected static load. See

text
real 0 none

out_high Used to calculate reflected static load. See
text

real 5 none

clamp_low Clamp threshold ‘ZERO’ digital input.
Default to out_low

real out_low none

clamp_high Clamp threshold ‘ONE’ digital input.
Default to out_high

real out_high none

clamp_res Clamp minimum resistance real 1 1e-06 −∞
clamp_bias Clamp voltage real 0.8 0.2 - 2

out_family Output logic family string UNIV none

5.29.5 Device Operation

The analog-digital interface bridge is the main device used to connect analog signals to digital inputs. The
device produces a digital signal that is in the logic ‘1’ state when the analog input is above the high
threshold (IN_HIGH) and a logic ‘0’ state when it is below the low threshold (IN_LOW). When the analog
input is in between these two states the output will be in the UNKNOWN state. The changes in state will
be delayed according to the RISE_DELAY and FALL_DELAY parameters.

5.29.6 Analog input load

The analog input presents a load to its driving circuit according to the digital load that is being driven. In
other words the digital load is reflected to the analog input. Both static (i.e. DC) and dynamic (i.e.
capacitance) elements of the load are reflected. To accurately reflect the sink and source currents, the
interface bridge needs to know the voltage levels of the device it is driving. The digital device will
(usually) have a SINK_CURRENT and a SOURCE_CURRENT model parameter each of which apply at
defined logic voltage levels. These levels must be specified in the OUT_LOW and OUT_HIGH parameters
of the AD interface bridge model. The input is modelled by a current source in parallel with a resistor. The
values of these components are calculated from the above mentioned parameters and the digital load.

5.29.7 Input clamp

The analog input is clamped at the voltages specified by CLAMP_LOW and CLAMP_HIGH. The
clamping device has a characteristic similar but not identical to a junction diode in series with a resistance.
Basically it has the characteristic of a diode up to a voltage excess of CLAMP_BIAS after which it
becomes resistive with a dynamic resistance of CLAMP_RES. The diode characteristics are calculated so
that the transition between the two regions is smooth.

5.29.8 Time Step Control - TIME_TOL parameter

Consider the following circuit and waveform

183
SIMetrix Simulator Reference Manual

5.29. Analog-Digital Interface Bridge

The graph shows the input and output of the NAND gate. Because the input is analog an implicit AD
interface bridge will have been connected by the simulator. In the above example the parameters for this
bridge have been set to:

.model HC_adc adc_bridge
+ in_low=2.1
+ in_high=2.2
+ rise_delay=1e-12
+ fall_delay=1e-12
+ out_family = "HC"
+ out_low = 0
+ out_high = 5
+ clamp_bias=0.5
+ clamp_res=10
+ time_tol=10u

The last parameter, TIME_TOL has been deliberately set ridiculously high to demonstrate what happens
without time step control on the input. The input thresholds of the HC gate are 2.1 and 2.2 volts yet the
output in the above example doesn’t switch until the input has reached 0V. Because there is little activity in
the analog circuit, the time steps are quite large. In fact in the above example the transient timepoints are at
55uS, 55.04uS, 56.2uS, 57.8uS and 60uS. The timepoint at 57.8u is just before the 2.2 volt threshold is
reached and it isn’t until the next time point, 2.2uS later that the lower threshold is broken. The result is
the location of the negative edge at the output is delayed by approx. 2.2uS from where it should be. The

184
SIMetrix Simulator Reference Manual

5.29. Analog-Digital Interface Bridge

problem is that the analog system knows nothing of what is happening in the digital domain so carries on
with large timesteps oblivious to the errors in the digital system.

To overcome this problem. SIMetrix features a mechanism (not in the original XSPICE system) that
detects that the threshold has been passed and cuts back the time step to ensure that the digital edge occurs
at an accurate point. The accuracy of this mechanism is controlled by the TIME_TOL parameter. The
smaller this parameter, the more accurately the exact threshold will be hit at the expense of short time steps
and longer simulation runs. TIME_TOL defaults to 100pS and in most applications this is a good choice.
The following shows the result when TIME_TOL is set to the default.

Here you can see the edge at the correct time.

The effect of not correctly simulating the threshold point has serious consequences when attempting to
simulate relaxation oscillators constructed with digital inverters as the following graphs illustrate:

185
SIMetrix Simulator Reference Manual

5.30. Digital-Analog Converter

The top trace is without threshold control and the bottom trace is with it.

5.30 Digital-Analog Converter

5.30.1 Netlist entry

Axxxx [digital_in_0 digital_in_1 .. digital_in_n]
+ analog_out model_name

5.30.2 Connection details

Name Description Flow Type Allowed types Vector bounds

digital_in Data output in d d 1 - 32

analog_out Analog output out v v, vd, i, id n/a

5.30.3 Model format

.MODEL model_name da_converter parameters

186
SIMetrix Simulator Reference Manual

5.30. Digital-Analog Converter

5.30.4 Model parameters

Name Description Type Default Limits

output_offset Offset voltage real 0 none

output_range Input signal range real 1 none

twos_complement Use 2’s complement input. (Default is
offset binary)

boolean FALSE none

output_slew_time Output slew time real 10nS 1e−12 −∞
in_family Input logic family string UNIV none

input_load Input load real 1pF 0−∞
sink_current Input sink current real 0 none

source_current Input source current real 0 none

5.30.5 Device Operation

This device is a 1-32 bit digital to analog converter. Its operation is illustrated by the following diagrams.

187
SIMetrix Simulator Reference Manual

5.30. Digital-Analog Converter

DAC Waveforms

188
SIMetrix Simulator Reference Manual

5.31. Digital-Analog Interface Bridge

DAC waveforms expanded to show output slew

The device illustrated above has the following model definition:

.model DAC_4 da_converter
+ output_slew_time 1e-08
+ output_range 5
+ output_offset 0

In offset binary mode the D-A converter produce an output voltage equal to:

-OUTPUT_RANGE/2 + OUTPUT_OFFSET + code * OUTPUT_RANGE/2n

where n is the number of bits and code is the digital input code represented as an unsigned number
between 0 and 2n − 1.

In 2’s complement mode the output is:

OUTPUT_OFFSET + code * OUTPUT_RANGE/2n

where n is the number of bits and code is the digital input code represented as a signed number between
−2n/2 and 2n/2 − 1.

Whenever the input code changes, the output is set on a trajectory to reach the target value in the time
specified by OUTPUT_SLEW_TIME. UNKNOWN states are ignored. That is the input will be assumed
to be at the most recent known state.

5.31 Digital-Analog Interface Bridge

189
SIMetrix Simulator Reference Manual

5.31. Digital-Analog Interface Bridge

5.31.1 Netlist entry

Axxxx in out model_name

5.31.2 Connection details

Name Description Flow Type

in Input in d

out Output inout g

5.31.3 Model format

.MODEL model_name dac_bridge parameters

5.31.4 Model parameters

Name Description Type Default Limits

out_low Analog output for ‘ZERO’ digital
input

real 0 none

out_high Analog output for ‘ONE’ digital
input

real 5 none

g_resistive Output conductance for ‘RESISTIVE’
digital input

real 0.001 none

g_pullup Output conductance for ‘STRONG’
digital high input

real 0.01 none

g_pulldown Output conductance for ‘STRONG’
digital low input

real 0.01 none

g_hiz Output conductance for
‘HI_IMPEDANCE’ strength

real 1.00E-09 none

input_load Capacitive input load (F) real 1pF none

t_rise Rise time 0 -> 1 real 1nS 1e−12 −∞
t_fall Fall time 1 -> 0 real 1nS 1e−12 −∞
knee_high Knee voltage logic high state real 3 none

knee_low Knee voltage logic low real 2 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

v_smooth Smoothing function offset voltage real 0 0−∞
in_family Input logic family string UNIV none

190
SIMetrix Simulator Reference Manual

5.31. Digital-Analog Interface Bridge

5.31.5 DC characteristics

This digital to analog interface bridge is the main device used to connect digital signals to analog devices.
The output provides an analog voltage and source resistance according to the state and strength of the
driving digital input. The output has a non-linear characteristic that is a simplified model of a typical
digital output stage. The following graphs show the output characteristics for the supplied high speed
CMOS DA bridge. This has the following model parameters:

.model HC_dac dac_bridge
+ out_high=5 ; Logic high voltage
+ input_load=-31p ; Compensates for added rise and fall time
+ t_rise=2n ; Output rise time
+ t_fall=2n ; Output fall time
+ g_pullup=0.024 ; 1/(logic high output resistance)
+ g_pulldown=0.034 ; 1/(logic low output resistance)
+ g_hiz=1e-9 ; 1/(high impedance output res)
+ knee_low = 2.0 ; voltage at resistive/constant current
+ ; knee logic low
+ knee_high =2.75 ; voltage at resistive/constant current
+ ; knee logic high
+ v_smooth = 0.5 ; Knee smoothing band
+ in_family="HC"

Logic ‘0’ state - strength = STRONG

In the above graph, the slope of the curve at V=0 is determined by the G_PULLDOWN parameter. The
‘knee smoothing band’ is a transitional area where the output switches from a constant resistance to a
constant current. The smoothing characteristic is a quadratic and is calculated to be smooth at all points.
This is required for good convergence behaviour. The knee smoothing band starts at
KNEE_LOW-V_SMOOTH and finishes at KNEE_LOW+V_SMOOTH.

191
SIMetrix Simulator Reference Manual

5.32. Controlled Digital Oscillator

Logic ‘1’ state - strength = STRONG

If a state with RESISTIVE strength is applied to the input of a digital to analog interface bridge, the output
has the characteristic of a pure resistor connected to the voltage associated with the input’s state. In the
example given above, this would be a 1k resistor connected to 0V for the logic ‘0’ state and a 1k resistor
connected to +5V for the logic ‘1’ state. (1k is 1/G_RESISTIVE)

For the HI-IMPEDANCE strength, the output will look like a resistor of value 1/G_HIZ connected to a
voltage half way between the two analog output states. (1G connected to 2.5V in the above example.)

When the input state is UNKNOWN the output will be as if it were half way between the two known
states. This is a compromise solution. The UNKNOWN state does not have a parallel in the analog
domain so instead it is treated as a transitional state. In some cases the UNKNOWN state occurs in
transitional cases although this is not the correct meaning of UNKNOWN.

5.31.6 Switching Characteristics

When the logic state at the input changes, the output will transition from the current state to the target state
in a time determined by T_RISE or T_FALL according to the direction of the state change.

5.32 Controlled Digital Oscillator

5.32.1 Netlist entry

Axxxx cntl_in out model_name : parameters

5.32.2 Connection details

Name Description Flow Type Allowed types

cntl_in Control input in v v, vd, i, id

out Output out d d

192
SIMetrix Simulator Reference Manual

5.32. Controlled Digital Oscillator

5.32.3 Instance Parameters

Name Description Type

init_phase Initial phase real

5.32.4 Model format

.MODEL model_name d_osc parameters

5.32.5 Model parameters

Name Description Type Default Limits Vector
bounds

cntl_array Control array real vector N/A none 2−
∞

freq_array Frequency array real vector N/A 0−∞ 2−
∞

duty_cycle Output duty cycle real 0.5 1µ -0.999999 n/a

init_phase Initial phase of output real 0 -180 - +360 n/a

rise_delay Rise delay real 1n 0−∞ n/a

fall_delay Fall delay real 1n 0−∞ n/a

phase_tol Phase tolerance/degrees real 10 0 - 45 n/a

out_family Output logic family string UNIV none n/a

out_res Digital output resistance real 100 0−∞ n/a

out_res_pos Digital output res. pos. slope real out_res 0−∞ n/a

out_res_neg Digital output res. neg. slope real out_res 0−∞ n/a

5.32.6 Device Operation

This device produces an output frequency controlled by an analog input signal following an arbitrary
piece-wise linear law. The input to output frequency characteristic is defined by two parameters
CNTL_ARRAY and FREQ_ARRAY. The following is an example of a .MODEL statement:

.model vco d_osc
+ cntl_array=[-1,0,1,2,3,4,5]
+ freq_array=[0,10000,40000,90000,160000,250000,360000]

The frequency characteristic described by the above example follows a square law. The two arrays
CNTL_ARRAY and FREQ_ARRAY must be the same length. These define the frequency output for a
given analog input.

193
SIMetrix Simulator Reference Manual

5.33. Analog-Digital Schmitt Trigger

5.32.7 Time Step Control

In order to control the accuracy of the phase of the output signal, this model may cut back the analog time
step. At each analog time point, the required frequency is calculated and the digital output is set at that
frequency. If the analog input changes by too large an amount between time points, the digital output
phase could be substantially in error as the frequency is constant between analog time points. The actual
error is calculated and if this exceeds PHASE_TOL, the time point is rejected and a time point at which
the error will be in tolerance is estimated.

Note: This model was included with the original XSPICE code but the SIMetrix version has been
completely re-written. The original did not have any phase error control and could not give accurate results
unless the analog time step was artificially kept small.

5.33 Analog-Digital Schmitt Trigger

5.33.1 Netlist entry

Axxxx in out model_name

5.33.2 Connection details

Name Description Flow Type Allowed types

in Input inout g g, gd

out Output out d d

5.33.3 Model format

.MODEL model_name adc_schmitt parameters

5.33.4 Model parameters

Name Description Type Default Limits

in_low Maximum 0-valued analog input real 0.1 none

in_high Minimum 1-valued analog input real 0.9 none

rise_delay Rise delay real 1nS 1e−12 −∞
fall_delay Fall delay real 1nS 1e−12 −∞
time_tol Threshold time tolerance real 100pS 1e−12 −∞
out_low Analog out for ‘ZERO’ input real 0 none

out_high Analog output ‘ONE’ input real 5 none

clamp_res Clamp minimum resistance real 1 1e-06 −∞
clamp_bias Clamp voltage real 0.8 0.2 - 2

out_family Output logic family string UNIV none

init_cond Initial condition real 0 none

194
SIMetrix Simulator Reference Manual

5.33. Analog-Digital Schmitt Trigger

5.33.5 Device Operation

This device is basically identical to the Analog-Digital Interface Bridge. The only difference is the
behaviour of the device when the analog input lies between the threshold voltages. With the interface
bridge, the output is UNKNOWN under these circumstances but with this Schmitt Trigger, the output
retains its previous value and so is always in a known state. In summary, the output will only switch from
low to high when the input exceeds the higher threshold (IN_HIGH) and will only switch from high to low
when the input descends below the lower threshold (IN_LOW).

If initial input voltage lies between the hysteresis thresholds, the output state is determined by the
init_cond parameter.

195
SIMetrix Simulator Reference Manual

Chapter 6

Command Reference

6.1 Overview

Simulator commands instruct the simulator how to read in and simulate the circuit. All simulator
commands begin with a period (.) .

For the remainder of this chapter and elsewhere in this manual, simulator commands are referred to as
‘Statements’ to distinguish them from commands entered in the command shell.

The schematic editor supports some of the statements described in this chapter but not all. Unsupported
analysis statements may be added manually to the schematic’s netlist. See Adding Extra Netlist Lines for
details.

The following simulator statements are recognised by SIMetrix.

.AC

.DC

.ENDF

.ENDS

.FILE

.FUNC

.GLOBAL

.GRAPH

.IC

.INC

.INCLUDE

.KEEP

.LOAD

.LIB

.MODEL

.NOCONV

.NODESET

.NOISE

196
SIMetrix Simulator Reference Manual

6.2. General Sweep Specification

.OP

.OPTION

.OPTIONS

.PARAM

.PARAMETER

.POST_PROCESS

.PRINT

.SENS

.SETSOA

.SUBCKT

.TEMP

.TF

.TRACE

.TRAN

The following statement is only recognised in model library files.

.ALIAS

6.2 General Sweep Specification

6.2.1 Overview

SIMetrix features a common sweeping algorithm which is used to define the swept analysis modes: .DC,
.AC, .NOISE and (now) .TF, along with multiple analyses such as Monte Carlo.

The sweep algorithm has 6 modes:

• Device. Sweeps a single default value of a specified device. E.g. voltage of a voltage source,
resistance of a resistor or the capacitance of a capacitor.

• Temperature

• Parameter. Parameter can be referenced in an expression for a model or instance parameter.

• Model parameter. Named model parameter.

• Frequency. (Not applicable to .DC)

• Monte Carlo. Perform a specified number of steps with distribution functions (i.e tolerances)
enabled.

• Sensitivity. Perturbs each distribution function in turns to evaluate sensitivity of that function.

• Worst-case. Requires a prior sensitivity analysis. Perturbs all distribution functions to their full
tolerance in a direction determined by their sensitivity to a specified goal function.

Standard SPICE only provides a subset of the above. .DC can only sweep voltage and current sources, .AC
and .NOISE can only sweep frequency while .TF can’t be swept at all.

As well as providing these modes, each of the modes can sweep in four different ways. These are linear,
decade, octave and list.

197
SIMetrix Simulator Reference Manual

6.2. General Sweep Specification

6.2.2 Syntax

All the swept analysis modes use the same general syntax to specify the sweep parameters. However, to
maintain compatibility with SPICE and its derivatives including earlier versions of SIMetrix, each analysis
mode allows variations to this standard syntax. The general syntax is described below while the variations
allowed for each analysis mode are described in the section dedicated to that analysis mode.

All of the analysis modes can optionally be entered in a similar manner to .MODEL statements i.e. as an
unordered list of parameter names followed by their values. For example, the following is a perfectly legal
noise analysis specification:

.noise V=vout DEVICE=V1 VN=0 F=1k LIN=(100 -10m 10m)
+ INSRC=V1

In the various forms of the syntax described in the following sections, some of the parameter names may
be omitted as long as they are entered in a particular order. It is sometimes, however, easier to remember
parameter names rather than a default order, so the method described above may be more convenient for
some users.

General syntax for swept analyses

.AC|.DC|.NOISE|.TF sweep_spec [analysis specific parameters]

sweep_spec: One of the following:

DEVICE device_name step_spec F frequency
TEMP step_spec F frequency
PARAM param_name step_spec F frequency
MODEL model [PARAM] mod_param_name step_spec F frequency
FREQ step_spec
MONTE num_steps F frequency OUTFILE xml_logfile NOMCLOG
SENS [SENSID sensid] [SPAN span] [OUTFILE sens_outfile]
WC [SENSID sensid] [INFILE sens_infile] [WCID wcid] [OUTFILE wc_outfile]

Where

device_name Name of device to be swept. The following components may be swept:
Capacitors, all controlled sources, fixed current source, fixed voltage
source, inductors and resistors

param_name Name of parameter used in expression. Expressions may be used to define
an instance or model parameter and may also be used in arbitrary
sources

model Name of model containing parameter to be swept. If the model is a binned
model (as used in some process development kits for IC design) you can
specify a specific bin (e.g. modname.1) or the base name (e.g. modname).
If you specify the base name, all bins in the model will be swept.

mod_param_name Name of model parameter

num_steps Number of steps to be performed for Monte Carlo sweep

frequency Specified frequency for which .NOISE, .AC and .TF analyses are to be
performed. May be zero for .AC and .TF.

sensid Identifier for sensitivity analysis. In the SENS specification this may be
any arbitrary string. This may then be used in a worst-case analysis (WC
specification) to signify that the worst-case analysis should receive its
sensitivity data from that analysis. The sensid value must also be included
in sensitivity measurement function (.SENSMEAS) definitions. If sensid
is omitted from the sweep specification, a default value will be used. This
is the analysis name, TRAN for .tran, AC for .AC etc. For single step
sweeps, the default name is prefixed with sweep_

198
SIMetrix Simulator Reference Manual

6.3. Multi Step Analyses

span Proportion of the tolerance on a component that is perturbed for sensitivity
measurement. The default value is 1.0 meaning that the component will be
perturbed the whole tolerance from its nominal value

step_spec See below

sens_outfile File that will receive the sensitivity data. This is an XML format file that is
used to generate reports and pass data to a subsequent worst-case analysis.
It is not usually necessary to specify this parameter; a default file located
in the temporary data directory will be used if this parameter is
omitted

sens_infile Specifies input data file for a worst-case analysis. This file is usually
generated by a sensitivity analysis. If omitted the file specified by
sens_outfile in the most recent sensitivity analysis sharing the same sensid
will be used.

wcid Identifier for worst-case analysis. This is used to identify sensitivity
measurement functions that should be called to provide data output for this
analysis. If omitted, the parameter defaults to the value of sensid

wc_outfile Data output file for worst-case analysis

step_spec is defined as follows:

STP start stop step
LIN num_points start stop
DEC num_points_decade start stop
OCT num_points_octave start stop
LIST val1 [val2 ...]

Where:

start First value

stop Last value (inclusive)

step Interval

num_points Total number of points

num_points_decade Number of points per decade

num_points_octave Number of points per octave

STP and LIN modes are both linear sweeps but specified differently. STP specifies start, stop and a step
size, while LIN specifies start, stop and the total number of points.

6.3 Multi Step Analyses

6.3.1 Overview

The sweep specification described in General Sweep Specification can also be applied to define multiple
analyses including Monte Carlo analysis. This can be applied to the swept modes .DC, .AC, .NOISE and
.TF along with .TRAN. The analyses .SENS and .OP cannot be run in multi-step mode. A multi-step .OP
is in fact the same as .DC so this is not required. Monte Carlo analysis is the subject of its own chapter
(see Monte Carlo Analysis) but it is invoked in the same way as other multi-step modes. As well as the
standard 6 sweep modes, small-signal multi-step analyses can be run in snapshot mode which uses
snapshots created by a previous transient analysis.

199
SIMetrix Simulator Reference Manual

6.3. Multi Step Analyses

6.3.2 Syntax

The general form is:

.analysis_name analysis_parameters SWEEP
+ [sweep_spec] | [SNAPSHOT STP snapstart snapstop snapstep] |
[SCRIPTCOUNT=numscriptruns SCRIPT=script] [NUMCORES=num_cores]

Where:

.analysis_name Dot statement for analysis

analysis_parameters Specific parameters for that analysis

sweep_spec See General Sweep Specification.

SNAPSHOT Use snapshots created by a previous transient analysis. For full details, see
Snapshots.

snapstart Index of first snapshot. Snapshots are counted in the order in which they
are created. The first is 0. Use STP 0 0 0 to specify all available
snapshots.

snapstop Index of last snapshot

snapstep Snapshot interval (usually 1)

numscriptruns Number of repeat steps using script. If present, the script script is called
for each step. The script may use the function GetCurrentStepValue() to
determine the step number (base 1, i.e. the first step is 1, the second 2
etc.). The functions SetInstanceParamValue() and SetModelParamValue()
may be used to change model or instance parameters

script Script called for each step

num_cores If specified and greater than 1, the work for the run will be shared amongst
num_cores processor cores using multiple processes. More information
about using multiple cores can be found in User’s Manual/Analysis
Modes/Using Multiple Cores for Multi-step Analyses.

Examples

Run 10 Monte Carlo runs for 1mS transient analysis

.TRAN 1m SWEEP MONTE 10

As above but does 1000 steps split over 4 cores. So each core will do 250 steps. Requires a system
equipped with at least 4 physical processor cores.

.TRAN 1m SWEEP MONTE 1000 NUMCORES=4

Sweep V1 from 0 to 5 volts in 0.1V steps for 200us transient

.TRAN 200u SWEEP DEVICE V1 STP 0 5 0.1

AC sweep of voltage source V5 from -300mV to 300mV. Repeat 6 times for parameter restail from 450 to
550.

.AC DEVICE=V5 LIN 100 -300m 300m F=100000
+ SWEEP PARAM=restail LIN 6 450 550

Run AC sweep using all available snapshots

.AC DEC 100k 10G SWEEP SNAPSHOT STP 0 0 0

200
SIMetrix Simulator Reference Manual

6.3. Multi Step Analyses

Run a transient sensitivity analysis followed by a worst-case analysis

.TRAN 200u SWEEP SENS

.TRAN 200u SWEEP WC

6.3.3 Syntax - Optimiser

A special form of multi-step runs an optimisation analysis. This is an alternative to the form that uses the
.OPTIMISER statement. The multi-step optimiser mode can only specify a single analysis but runs more
quickly especially for small circuits.

.analysis_name analysis_parameters SWEEP OPT
+ optparams=[parameter_names]
+ optinitvals=initial_values
+ [optminvals=minimum_values]
+ [optmaxvals=maximum_values]
+ alg=algorithm
+ [abstol=absolute_tolerance]
+ [reltol=relative_tolerance]
+ [iterlim=iteration_limit]
+ [schematic=schematic_file]
+ [results_file=results_file]
+ [show_progress]

.analysis_name Dot statement for analysis

analysis_parameters Specific parameters for that analysis

parameter_names Names of parameters whose optimal value will be sought in the
optimisation process. This is a list of names separated by commas.
Parameters may be used in expressions to define model and instance
parameters in exactly the same way as the .PARAM statement

initial_values Initial values for the parameters. List of values separated by commas
corresponding directly with the parameter names. Values that will be used
initially. The optimiser will subsequently adjust these values

minimum_values Minimum values for the parameters. List of values separated by commas
corresponding directly with the parameter names. The optimiser will not
use values less than those specified here

maximum_values Maximum values for the parameters. List of values separated by commas
corresponding directly with the parameter names. The optimiser will not
use values greater than those specified here

absolute_tolerance Optimiser will stop when the objective function (defined using .OPTSPEC
statement) stabilises to an absolute value controlled by this
parameter

relative_tolerance Optimiser will stop when the objective function (defined using .OPTSPEC
statement) stabilises to a relative value controlled by this parameter

iteration_limit Optimiser will stop when this number of iterations reaches this
value

schematic_file Report purposes only. Path entered here will appear in the final
report

results_file XML file where full details of the optimiser session will be written. The
GUI can read this file and create an HTML report from it

show_progress If present, progress messages will be displayed while the optimiser is
running

201
SIMetrix Simulator Reference Manual

6.4. .AC

6.4 .AC

6.4.1 Syntax

.AC inner_sweep_spec [F frequency] [RUNNAME=runname] [SWEEP outer_sweep_spec]

Spice compatible frequency sweep:

.AC DEC|LIN|OCT num_points start stop

Instructs the simulator to perform a swept small signal AC analysis. SIMetrix AC analysis is not limited to
a frequency sweep as it is with generic SPICE and derivatives. See General Sweep Specification and
examples below for more details.

frequency Frequency at which analysis will be performed for non-frequency sweeps.
Default 0.

inner_sweep_spec See General Sweep Specification for syntax. Defines sweep mode. FREQ
keyword is optional.

outer_sweep_spec If specified, analysis will be repeated according to this specification. See
General Sweep Specification for syntax.

num_points LIN: total number of points DEC: number of points per decade OCT:
number of points per octave

start Start frequency for SPICE compatible mode

stop Stop frequency for SPICE compatible mode

runname If specified, the value for runname will be passed to the simulation data
group as a string variable with name UserRunName. This may be used to
identify which analysis generated the data which is useful when running
netlists with multiple analyses defined

Except for frequency sweep, the frequency at which the analysis is being performed should be specified. If
omitted, the frequency will be assumed to be zero.

For non-frequency sweeps, a new dc operating point may be calculated at each step depending on what is
being swept. If a capacitor, inductor or an ‘AC only’ model parameter is being swept, then no new dc
operating point will be required. Otherwise one will be performed. An ‘AC only’ parameter is one that
does not affect DC operating point such as device capacitance.

6.4.2 Notes

An AC analysis calculates the small signal frequency response of the circuit about the dc operating point.
The latter is automatically calculated prior to commencing the frequency sweep. One or more inputs may
be specified for AC analysis by using voltage or current sources with the AC specification (See Voltage
Source). The results of an AC analysis are always complex.

6.4.3 Examples

SPICE compatible. Sweep frequency from 1kHz to 1Meg

.AC DEC 25 1k 1MEG

Sweep voltage source V1 100 points from -100mV to 100mV. Frequency = 100kHz

.AC DEVICE V1 LIN 100 -100m 100m F=100k

202
SIMetrix Simulator Reference Manual

6.5. .ALIAS

Sweep parameter Rscale from 0.5 to 3 in steps of 0.1. Frequency=20Meg

.AC PARAM Rscale STP 0.5 3 0.1 F=20Meg

Sweep resistor R1 with values 10k 12k 15k 18k 22k 27k 33k, Frequency =1.1KHz

.AC DEVICE R1 LIST 10k 12k 15k 18k 22k 27k 33k F=1.1K

Monte Carlo sweep 100 steps. Frequency = 10K. This is useful if - say - you are interested in the gain of
an amplifier at one frequency and it needs to lie within a defined tolerance. Previously you would need to
repeat an AC sweep at a single frequency to achieve this which could take a long time especially if the
circuit has a difficult to find operating point. The analysis defined by the following line will take very little
time even for a large circuit.

.AC MONTE 100 F=10K

6.4.4 Examples of Nested Sweeps

As Monte Carlo above but repeated from 0 to 100C

.AC MONTE 100 F=10K SWEEP TEMP STP 0 100 10

... and at a number of frequencies

.AC MONTE 100 SWEEP FREQ DEC 5 1k 100k

6.5 .ALIAS

6.5.1 Syntax

.ALIAS alias_name device_name device_type

This statement may only be used in device model library files. It is not recognised by the simulator. It
permits a device model or subcircuit to be referenced by a different name. This allows one model
definition to be used for multiple part numbers.

alias_name Alias name

device_name Device to which alias refers

device_type Type of device to which alias refers. Must be one of the following C, D,
LTRA, NJF, NMF, NMOS, NPN, PJF, PMF, PMOS, PNP, R, SW or
SUBCKT. see .MODEL for more details.

6.5.2 Example

.MODEL BC547C NPN
+ IS=7.59E-15 VAF=19.3 BF=500 IKF=0.0710 NE=1.3808
+ ISE=7.477E-15 IKR=0.03 ISC=2.00E-13 NC=1.2 NR=1 BR=5
+ RC=0.75 CJC=6.33E-12 FC=0.5 MJC=0.33 VJC=0.65
+ CJE=1.25E-11 MJE=0.55 VJE=0.65 TF=4.12E-10 ITF=0.4 VTF=3
+ XTF=12.5 RB=172 IRB=0.000034 RBM=65

.ALIAS BC549C BC547C NPN

The above would provide identical definitions for both BC547C and BC549C bipolar transistors.

203
SIMetrix Simulator Reference Manual

6.6. .DATA

Notes .ALIAS definitions will recognise models defined in other files provided the file in
which the alias resides and the file in which the model definition resides are part of
the same library specification. A library specification is a single pathname possibly
with a wildcard (‘?’ or ‘*’) to refer to multiple files. E.g. /simetrix/models/*.mod is a
library specification and refers to all files with the extension ‘.mod’ in the directory
/simetrix/models.

Aliases must refer directly to a model or subcircuit definition and not to other
aliases.

6.6 .DATA

Three formats:

Simple format

.DATA name data [TYPES=types]

Multiple column format

.DATA name FORMAT=COLUMNS [TYPES=types] COLUMNS=column_names data

XY Format

.DATA name FORMAT=XY [TYPES=types] data

Creates a vector that will be output to the simulation data group. This can be used in post-processing
operations such as optimiser measurements.

Simple format Creates a single vector with the name name

Multiple column
format

Creates one or more vectors. The names and the number of vectors is
determined by the COLUMNS parameter. This is a comma separated list
of names. The data must be arranged in columns

XY Format Creates a single XY Vector with the name name. The data must consist of
two columns with the first column defining the X-data and the second
columns defining the Y-vector

The TYPES parameter is a list of comma separated physical type names. Maybe one of the following
values

V Voltage

A current

Secs Time

Hertz Frequency

Ohm Resistance

Sie Conductance

F Capacitance

J Energy

W Power

C Charge

Vs Flux

204
SIMetrix Simulator Reference Manual

6.7. .DC

6.6.1 Example

.data Diode_data format=XY
+ 0.2 0.017530716724236
+ 0.254901960784314 0.0357202832826342
+ 0.309803921568627 0.0727830275203565
+ 0.364705882352941 0.14827729430306
+ 0.419607843137255 0.299668595377245
+ 0.474509803921569 0.589675601217673
+ 0.529411764705882 1.10904794310676
+ 0.584313725490196 1.97923148874408
+ 0.63921568627451 3.35105785726025
+ 0.694117647058824 5.38251036969293
+ 0.749019607843137 8.20132439386704
+ 0.803921568627451 11.8538062030208
+ 0.858823529411765 16.2514356239684
+ 0.913725490196078 21.1880160385802
+ 0.968627450980392 26.4796478563484
+ 1.02352941176471 31.9973234288307
+ 1.07843137254902 37.7095034055593
+ 1.13333333333333 43.7173003655197
+ 1.18823529411765 50.1648407603598
+ 1.24313725490196 57.1465442469968
+ 1.29803921568627 64.8085898417056
+ 1.35294117647059 73.3707911567976
+ 1.4078431372549 83.0553217690679
+ 1.46274509803922 94.0181558001952
+ 1.51764705882353 106.428022091678
+ 1.57254901960784 120.475920740442
+ 1.6 128.180625221171

The above statement will create an XY Vector called Diode_data and this will be placed in the simulation
data group created by the current analysis.

6.7 .DC

6.7.1 Syntax

.DC inner_sweep_spec [RUNNAME=runname] [SWEEP outer_sweep_spec]

Spice compatible:

.DC device_name start stop step

The remainder are SIMetrix 2.5 - 3.1 compatible:

.DC TEMP start stop step

.DC PARAM param_name start stop step

.DC MODEL model [PARAM] mod_param_name start stop step

Instructs simulator to perform a DC sweep analysis. A dc analysis performs a dc operating point analysis
for a range of values according to the sweep specification. SIMetrix DC analysis is not limited to sweeping
a voltage or current source as with generic SPICE. Any mode defined by the general sweep specification
(see General Sweep Specification) may be used although frequency sweep has no useful purpose.

inner_sweep_spec See General Sweep Specification for syntax. Defines sweep mode.
DEVICE keyword is optional.

outer_sweep_spec If specified, analysis will be repeated according to this specification. See
Multi Step Analyses for details.

205
SIMetrix Simulator Reference Manual

6.7. .DC

device_name Component reference of voltage source, current source, resistor or
controlled source to be swept. (Only voltage and current sources are
SPICE compatible).

start Start value for sweep

stop Stop value for sweep

step Increment at each point

param_name Parameter name. This would be used in an expression to define a
component or model value.

model_name Model name e.g. Q2N2222

model_parameter_name Model parameter name e.g. IS

runname If specified, the value for runname will be passed to the simulation data
group as a string variable with name UserRunName. This may be used to
identify which analysis generated the data which is useful when running
netlists with multiple analyses defined.

If start is arithmetically greater than stop then step must be negative.

It is not necessary to declare parameters with .PARAM if using parameter sweep.

6.7.2 Examples

SPICE compatible. Sweep V1 from 0 to 5 volts in steps of 0.1 volt
.DC V1 0 5 0.1

SIMetrix 3.1 compatible temperature sweep
.DC TEMP 0 100 2

Decade (i.e. logarithmic) sweep. Sweep V1 from 1mV to 1V with 25 points per decade
.DC V1 DEC 25 1m 1v

Note that the DEVICE keyword has been omitted. This is the default sweep mode for .DC.

Do 1000 Monte Carlo steps. This performs the same task as a Monte Carlo analysis applied to a DC
operating point. In other products and earlier versions of SIMetrix this task would take a long time as the
operating point is solved from scratch each time. With the mode described by the following example, the
operating point need only be calculated from scratch once. All subsequent steps are seeded by the previous
one and usually require only a few iterations. The end result is a sometimes spectacular increase in speed.

.DC MONTE 1000

6.7.3 Examples of Nested Sweeps

Decade sweep at temperatures 0 to 100 in steps of 10
.DC V1 DEC 25 1m 1v SWEEP TEMP STP 0 100 10

Note the STP keyword is necessary to signify the start-stop-step method of defining a linear sweep.
Alternatively LIN can be used which defines the sweep in terms of the total number of points. The
following is equivalent to the above:

.DC V1 DEC 25 1m 1v SWEEP TEMP LIN 11 0 100

Do 100 run Monte Carlo analysis for temperature sweep
.DC TEMP 0 100 2 SWEEP MONTE 100

206
SIMetrix Simulator Reference Manual

6.9. .FUNC

6.8 .FILE and .ENDF

6.8.1 Syntax

.FILE filename
file_contents
.ENDF

The .FILE statement allows the contents of a file referenced in a .MODEL statement to be placed directly
in the netlist. Files are referenced in arbitrary logic blocks (see Arbitrary Logic Block - User Defined
Models), PWLFILE voltage and current sources (see PWL File Source), digital sources (see Digital Signal
Source) and digital state machines (see State Machine). Each of these may refer to files defined using
.FILE and .ENDF.

6.8.2 Example

.MODEL COUNT_8 d_logic_block file=counter_def

.FILE counter_def
PORT (DELAY = 10n) CountOut out[0:7] ;

EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;

Count = Count + 1 ;

CountOut = count ;
.ENDF

The .MODEL statement refers to a file called ‘counter_def’. This could be a real disk file called
counter_def or counter_def.ldf, but in the above example it is instead defined directly in the netlist using
.FILE and .ENDF.

6.8.3 Important Note

.FILE and .ENDF will not be recognised in library files.

6.8.4 Using with SIMPLIS

When using .FILE and .ENDF with the SIMPLIS simulator, the text "SIMPLIS_PASS_THRU" must be
placed at the end of the .FILE statement:

.FILE filename SIMPLIS_PASS_THRU
file_contents
.ENDF

6.9 .FUNC

.FUNC name ([arglist]) { body }

name Name of function. Must begin with a letter and not match one of the built
in functions.

arglist List of comma separated argument names. May be empty in which case
the function may be called without the parentheses. This is useful for
creating random variables for Monte Carlo analysis.

body Body of function. This is an expression referring to the names in arglist
that defines the operation performed by the function

207
SIMetrix Simulator Reference Manual

6.10. .GLOBAL

.FUNC defines a function that can be used in a model or device parameter expression, a parameter defined
using .PARAM or in an arbitrary source expression.

6.9.1 Examples

.FUNC FREQ(V) { (V)*120K }

.FUNC SWEEP(V) { SIN(TIME*FREQ(v)*2*PI) }

.FUNC RV1() { GAUSS(0.1) }

The third example may be called without parentheses as it has no arguments. E.g.:

.PARAM random1 = rv1 random2 = rv1

In the above, random1 and random2 will have different values when run in a Monte Carlo analysis.

6.9.2 Optimiser

Any expression that uses a function defined with .FUNC will be automatically processed by an
optimisation algorithm. For more information see Optimisation.

The optimiser attempts to speed simulations by making the expression evaluation more efficient. The
optimiser is effective when .FUNC is used to create very complex expressions perhaps to develop a
semiconductor device. In simple applications it may not make a noticeable improvement to performance.
The optimiser can be enabled for all expressions and can also be disabled completely. To enable for all
expressions use:

.OPTIONS optimise=2

To disable:

.OPTIONS optimise=0

6.10 .GLOBAL

.GLOBAL node [node...]

Identifies nodes as global. This allows nodes specified at the top level of a circuit to be accessed within a
subcircuit definition. For more information see Subcircuits.

6.11 .GRAPH

6.11.1 Parameters

.GRAPH signal_name|"expression"
+ [persistence = persistence]
+ [axisname = axisname]
+ [gridname = gridname]
+ [graphname = graphname]
+ [axistype = digital|grid|gridauto|axis|auto]
+ [curvelabel = curvelabel]
+ [xlabel = xlabel]
+ [ylabel = ylabel]
+ [xunit = xunit]
+ [yunit = yunit]
+ [xmin = xmin]
+ [ymin = ymin]
+ [xmax = xmax]
+ [ymax = ymax]
+ [analysis = analyses_list]

208
SIMetrix Simulator Reference Manual

6.11. .GRAPH

+ [ylog = lin|log|auto]
+ [xlog = lin|log|auto]
+ [nowarn = true|false]
+ [initXLims = true|false]
+ [bus = bustype]
+ [complete = true|false]
+ [order = order]
+ [colour | color = colour]
+ [colourname | colorname = colourname]
+ [disabled = true|false]
+ [xdelta = xdelta]
+ [ydelta = ydelta]
+ [proberef = proberef]
+ [measure[index] = measure_expression]
+ [measureLabel[index] = measure_label]
+ [useNameAsTitle = true|false]
+ [separateCurves = true|false]
+ [guid = guid]
+ [ownXAxis = true|false]

.GRAPH instructs SIMetrix to plot a graph of the specified signal or expression. The graph can be plotted
incrementally as the simulation proceeds or may be delayed until the run is complete.

Note that although .GRAPH is a simulator statement, it is implemented in the front end and will only
function in full GUI mode. Batch mode simulation does not support .GRAPH.

Parameter
name

Type Description

signal_name |
expres-
sion

string Specifies item to be plotted. If this is an expression, then it must be
enclosed in double quotation marks.

persistence integer Number of curves to be displayed at once. On repeated runs, any
curves from earlier runs remain until the number of curves exceeds
this value at which point the oldest is deleted automatically. If this
parameter is absent or zero, the curves are never deleted.

graphname string If specified, the curves will be directed to their own graph sheet
within the current window. The value of graphname is arbitrary and
is used to identify the graph so that multiple .graph statements can
specify the same one. It works in a similar way to axisname an
example of which is given below. This name is not used as a label for
display purposes but simply as a means of identification.

209
SIMetrix Simulator Reference Manual

6.11. .GRAPH

Parameter
name

Type Description

axistype string Can be one of four values to specify type of y-axis:

• DIGITAL. Use a digital axis. This is a small axis that carries
only one curve. It is intended for digital signals but may also
carry analog curves.

• GRID. Use a separate grid stacked on top of the main one. The
AXISNAME parameter may be used to identify a particular
grid used by another .GRAPH statement.

• GRIDAUTO. As GRID but separate y-axes will be used for
curves representing distinct physical quantities (e.g. voltage,
current, power etc)

• AXIS. Use a separate y-axis alongside the main one. The
AXISNAME parameter may be used to identify a particular
axis used by another .GRAPH statement.

• AUTO. This is the default value. A suitable axis is chosen
automatically.

axisname string This is only used if AXISTYPE is specified. The value of
AXISNAME is arbitrary and is used to identify the axis so that
multiple .GRAPH statements can specify the same one. An example
of this is given below. This name is not used as a label for display
purposes but simply as a means of identification. Axes can be
labelled using ylabel and xlabel.

gridname string This is used when AXISTYPE is set to GRID or GRIDAUTO. The
value of GRIDNAME is arbitrary and is used to identify the grid so
that multiple .GRAPH statements can specify the same one. For
compatibility with earlier versions, if GRIDNAME is not specified,
the value given to AXISNAME will be used instead.

curvelabel string Label for curve displayed in graph legend. If omitted, the label will
be the signal name or expression.

xlabel string Label for x-axis. Default is reference of curve being plotted (E.g.
time, frequency etc.)

ylabel string Label for y-axis. If there is only a single curve, this will default to the
label for the curve otherwise the default is blank.

xunit string Units for x-axis. Default is units of reference.

yunit string Units for y-axis. Default is units of curves plotted provided they are
all the same. If any conflict, the default will be blank

xmin real Minimum limit for x-axis. Must be used with xmax.

xmax real Maximum limit for x-axis. Must be used with xmin.

ymin real Minimum limit for y-axis. Must be used with ymax.

ymax real Maximum limit for y-axis. Must be used with ymin.

210
SIMetrix Simulator Reference Manual

6.11. .GRAPH

Parameter
name

Type Description

analysis string Specifies for what analysis modes the plot should be enabled. By
default it will be enabled for all analysis modes. Any combination of
the following strings, separated by a pipe (‘|’) symbol.

• TRAN. Transient analysis

• AC. AC analysis

• DC. DC sweep analysis

• NOISE. Noise analysis

• POP. POP analysis - SIMPLIS only

Other analysis modes do not produce results that can be
probed

ylog string One of three values
LIN Use linear axis

LOG Use log axis

AUTO Axis will be log if x values are log spaced. (E.g for decade
AC sweep) and all values are positive

Default if omitted: LIN

xlog string One of three values
LIN Use linear axis

LOG Use log axis

AUTO Axis will be log if x values are log spaced. (E.g for decade
AC sweep) and all values are positive.

Default if omitted: AUTO

nowarn Boolean If true, no warnings are given if an attempt is made to plot a
non-existent signal. Default: false.

initXLims Boolean When this is TRUE, the x-axis limits are initialised according to the
analysis. E.g. if the analysis is transient and runs from 0 to 1mS, the
x-axis will start with these limits. If set to FALSE, the x-axis limits
are calculated to fit the curve and updated incrementally. You should
set this to FALSE if you are plotting an expression whose x values
are not the same as the x values for the analysis e.g. using the XY()
function for an X-Y plot

The default value of this option is usually true but can be changed
using the option NoInitXAxisLimits . Type at the command
line:

“Set NoInitXAxisLimits” to change default to false.

complete Boolean If true, the plot is not produced until the analysis is completed.
Otherwise the plot is updated at a rate determined by the global
option ProbeUpdatePeriod. This is forced for some types of plot as
certain expressions cannot be plotted incrementally

This can be set using the options dialog box (File | Options |
General...). Default: false.

211
SIMetrix Simulator Reference Manual

6.11. .GRAPH

Parameter
name

Type Description

order string Arbitrary string used to control the display order of digital traces.
Digital traces are displayed in an order that is determined by the
alphanumeric sort order of the order value. If omitted, the curvelabel
value is used instead

colour string Number representing an RGB value of the colour of the final trace.
The number, when converted to hexadecimal, is in the form:

bbggrr

where bb is the blue value, gg is the green value and rr is the red
value. So, 16711680 - FF0000 in hexadecimal is deep blue.

color string alias to colour

colourname string arbitrary name used to match colours between multiple .GRAPH
statements. The first .GRAPH statement encountered that specifies a
colourName parameter will set the colour for all other .GRAPH
atatements that specify the same colourName parameter

disabled Boolean If set to TRUE, the statement is disabled and no curve will be
generated.

xdelta real specifies the spacing between major grid lines on the x-axis

ydelta real specifies the spacing between major grid lines on the y-axis

proberef string Identifies a fixed probe schematic symbol that generated the
.GRAPH statement and is used to create history data

measure[index] string Defines an expression that will create a measurement object attached
to the curve. Multiple measure parameters may be defined but each
must specify a distinct index value. Index values used for multiple
measure parameters should be contiguous starting at zero. The
expression should return a scalar value. It may access the curve’s
data using the sub-expression cv(%curve%). For example
Mean1(cv(%curve%)) will create a measurement object that will
display the mean of the curve created

measureLabel
[index]

string Defines the label for the corresponding measure definition

useNameAsTitle Boolean If set, the name provided in the graphname parameter will also be
used to label the caption and tab of the graph window

separateCurves Boolean If true, new curves will be created for each new run. Otherwise a
single curve will be updated. When a single curve is updated, the
data for earlier runs is stored and may be displayed subject to the
setting of the Persistence property of the curve

guid string If set, the value given will set the curve property ProbeGUID. This is
expected to be a conventional 128 bit globally unique identifier. This
should not be enclosed with curly braces as the simulator will then
interpret the value as an expression. The value passed to the curve
will automatically have the curly braces added. Probe GUIDs are
used to map probes with the curves they generate. Typically the
GUID sent will be the instance GUID of the schematic probe. This is
used by the auto probe colouring scheme.

212
SIMetrix Simulator Reference Manual

6.11. .GRAPH

Parameter
name

Type Description

ownXAxis Boolean If set to TRUE, any grid created to display the probed result will have
an independent x-axis allowing individual x-axis zoom.

The .GRAPH statement is the underlying simulator mechanism used by the schematic’s fixed probes. See
User’s Manual/Graphs, Probes and Data Analysis/Fixed Probes for details.

.GRAPH supersedes the older and less flexible .TRACE. The latter is, however, still supported and may
sometimes be convenient for specifying multiple signals on one line.

6.11.2 Using Multiple .GRAPH Statements

If specifying several .GRAPH statements to plot a number of curves on the same graph, you should make
sure that the various parameters are consistent. If for example, a conflict arises if you specify xmin and
xmax for two .GRAPHs that plot curves in the same graph sheet, and the values for xmin and xmax are
different for each. You can specify xmin and ymin for just one of the .GRAPH statements or you can
specify for all and make sure they are all the same. The same applies to other non-Boolean parameters i.e.
ymin, ymax, xlabel, ylabel, xunits and yunits. The parameter initXLims, however must be specified with
the same value for all .GRAPH statements specifying the same graph sheet.

Conflicting values of ylog and xlog are resolved by plotting the curves on separate axes or graph sheets
respectively.

6.11.3 Creating X-Y Plots

To create an X-Y plot, use the XY() function (Script Reference Manual/Function Reference/XY for full
details of available functions). You should also specify “initXLims=false”. E.g.

.GRAPH "XY(imag(vout), real(vout))" initXLims=false
+ xlog=LIN complete=true

The above will create a Nyquist plot of the vector VOUT.

6.11.4 Using .GRAPH in Subcircuits

.GRAPH maybe used in a subcircuit in which case a plot will be produced for all instances of that
subcircuit. Note, however, that it will only work for single values and not for expressions when inside a
subcircuit. The value of the curveLabel parameter will be prefixed with the instance name so that the
displayed curves can be correctly identified.

6.11.5 Using Expressions with .GRAPH

You can enter an expression as well as single vectors to be plotted. A problem arises when plotting
expressions incrementally that are regularly updated while the simulation is running. SIMetrix versions
prior to v5 could not incrementally evaluate expressions, so each time the plot of an expression was
updated, the expression had to be recalculated from the beginning. This was inefficient and it has always
been recommended that the complete=true flag was added in these circumstance to inhibit incremental
plotting.

SIMetrix - from version 5 - now has the ability to incrementally evaluate some expressions and there is no
longer a recommendation to set complete=true. However, certain expression cannot be incrementally
evaluated and when such expressions are entered, incremental plotting will automatically be disabled and
the plot won’t appear until the run is complete.

213
SIMetrix Simulator Reference Manual

6.12. .IC

A notable example of expressions that cannot be incrementally evaluated is anything containing the
phase() function. This is because the phase() function uses a state machine to determine when the phase
wraps from -180 to 180 and back. An offset is then applied to make the phase plot continuous. Because of
the state machine, it is always necessary to evaluate this function from start to finish which makes
incremental evaluation difficult. An alternative is to use instead the arg() function. This is the same as
phase, but does not have the state machine and always gives an output that lies between +/- 180 degrees.

6.11.6 Plotting Spectra with .GRAPH

You can use .GRAPH to create spectrum plots using FFTs or Fourier. However, FFT is quite difficult to
use on its own as it needs interpolated data. So, a new user defined function called Spectrum() has been
developed that is especially designed for use with .GRAPH. Usage is:

Spectrum(vector, numPoints [, start [, stop]])

Where:

vector Vector or expression

numPoints FFT size - must be a binary power of 2

start Start time - default = 0

stop Stop time - default = end of data

Spectrum() cannot be incrementally evaluated and so incremental plotting will automatically be disabled
for any .GRAPH statement that uses it. See Using Expressions with .GRAPH.

Examples

.GRAPH C2_P curveLabel="Amplifier output" nowarn=true

Plots the vector C2_P and gives it the label ‘Amplifier output’. As NOWARN is TRUE, no warning will be
given if C2_P does not exist.

.GRAPH vout_quad
+ axisType="grid"
+ axisName="grid1"
+ persistence=2
+ curveLabel="Quadrature"
+ nowarn=true
+ analysis = TRAN|DC

.GRAPH vout
+ axisType="grid"
+ axisName="grid1"
+ persistence=2
+ curveLabel="In Phase"
+ yLabel="Filter Outputs"
+ nowarn=true
+ analysis = TRAN|DC

The above illustrates the use of the parameters AXISTYPE and AXISNAME. Both the vectors specified
by the above .GRAPH statements will be plotted on the same but separate grid. Because both grids have
been given the AXISNAME grid1, each curve will be plotted on the same one. If the values of axisname
for the above were different, each curve would be plotted on a separate grid. The ANALYSIS parameter
has been specified in both cases, so plots will only be created for transient and dc sweep analyses.

6.12 .IC

214
SIMetrix Simulator Reference Manual

6.13. .INC

.IC V(node1)=val1 [V(node2)=val2]...

OR

.IC node1 val1 [node2 val2]

This statement sets transient analysis initial conditions.

node1, node2 etc. Name of circuit node (or net) to which initial condition is to be applied.
See notes below.

val1, val2 etc. Voltage to be applied to net as initial condition. May be an expression
containing parameters defined using .PARAM.

If the UIC parameter is specified with the .TRAN statement no DC operating point will be calculated so an
initial condition will set the bias point in the same way as an IC=... parameter on a BJT, capacitor, diode,
JFET or MOSFET.

If the UIC parameter is absent from the .TRAN statement then a DC operating point is calculated before
the transient analysis. In this case the net voltages specified on the .IC statement are forced to the desired
initial values during the DC operating point solution. Once transient analysis begins this constraint is
released. By default the voltage force is effectively carried out via a 1Ω resistor. This can be changed with
the option setting ICRES (see .OPTIONS).

6.12.1 Alternative Initial Condition Implementations

An initial condition can also be specified using a voltage source with the DCOP parameter specified. E.g.

VIC1 2 3 3.5 DCOP

Will force a voltage of 3.5 volts between nodes 2 and 3 during the DC operating point solution. This has
two advantages over .IC:

1. It has zero force resistance

2. It can be applied differentially

You can also use a capacitor with the BRANCH parameter set to 1. E.g.:

C1 2 3 10u BRANCH=1 IC=3.5

This will behave identically to the voltage source in the above example during the DC operating point but
during a subsequent small-signal or transient analysis will present a 10 F capacitance to nodes 2 and 3.

See also: Capacitor and Voltage Source.

6.13 .INC

.INC pathname

Insert the contents of the specified file.

pathname File system pathname for file to be included

The .INC statement is replaced by the specified file in its entirety as if was part of the original file. .INC
statements may also be nested i.e. there may be .INC statements within the included file. Nesting may be
to any level.

215
SIMetrix Simulator Reference Manual

6.14. .KEEP

6.14 .KEEP

.KEEP signal_spec [signal_spec ...]

This statement tells the simulator what values to store during a simulation. By default all signals at the top
level and defined inside a hierarchical subcircuit are saved. .KEEP may be used in conjunction with some
.OPTIONS settings to increase or reduce the data saved.

signal_spec /TOP | /SUBS | /NOV | /NOI | /NODIG | /INTERNAL | *V | *I | *D |
V | **I | **D | subref.*V | subref.*I | subref.*D | subref.V | subref.**I
| subref.**D | ˆwildcard_filter | signal_name

subref Sub-circuit reference

/NOV Don’t store top level (i.e. not in a subcircuit) voltages. Equivalent to
“.OPTIONS KeepNov”

/NOI Don’t store top level currents. Equivalent to “.OPTIONS KeepNoi”

/NODIG Don’t store top level digital data. Equivalent to “.OPTIONS
KeepNod”

/SUBS Store all subcircuit data. Equivalent to “.OPTIONS KeepAll”

/TOP Overrides /subs. This is to inhibit storing signals in child schematics in
hierarchical designs. Equivalent to “.OPTIONS KeepTop”

/INTERNAL Save all internal device values. Some devices have internal nodes or
sources. For example the bipolar transistor has internal nodes to
implement terminal resistance. These internal values are not usually saved
but may be by specifying /INTERNAL. Equivalent to “.OPTIONS
KeepInternal”

ˆwildcard_filter General specification that selects values to store based on their name
alone. Would usually use one of the special characters ‘*’ and ‘?’. ‘*’
means ‘match one or more characters’ while ‘?’ means ‘match a single
character’. Some examples:

* matches anything

X1.* matches any signal name that starts with the three letters:
X1.

X?.* matches any name that starts with an X and with a ‘.’ for
the third letter.

*.q10#c matches any name ending with q10#c.

*V Store all top level voltages. This is actually implicit and need not be
specified at the top level of the netlist. It can be usefully used in
sub-circuit definitions - see notes.

*I Store all top level currents. This is actually implicit and need not be
specified at the top level of the netlist. It can be usefully used in
sub-circuit definitions - see notes.

*D Store all top level digital data. This is actually implicit and need not be
specified at the top level of the netlist. It can be usefully used in
sub-circuit definitions - see notes.

**V Store all voltages including those inside sub-circuits descending to all
levels

**I Store all currents including those inside sub-circuits descending to all
levels

**D Store all digital data including those inside sub-circuits descending to all
levels

216
SIMetrix Simulator Reference Manual

6.14. .KEEP

subref.*V Store all voltages within sub-circuit subref excluding voltages within
children of subref.

subref.*I Store all currents within sub-circuit subref excluding currents within
children of subref.

subref.*D Store all digital data within sub-circuit subref excluding digital data
within children of subref.

subref.**V Store all voltages within sub-circuit subref including voltages within
children of subref descending to all levels.

subref.*I Store all currents within sub-circuit subref including currents within
children of subref descending to all levels.

subref.*D Store all digital data within sub-circuit subref including digital data within
children of subref descending to all levels.

signal_name Explicit voltage or current.

6.14.1 Option Settings

A number of option settings are available to control data output. These can be used in conjunction with
.KEEP statements to define what data is saved. The Option settings are defined in the table below:

Option Name Description

KeepNone No data is saved except signals explicitly defined using .KEEP or
.GRAPH. Takes precedence over all other keep options

KeepNov No voltages will be saved except signals explicitly defined using .KEEP or
.GRAPH. Takes precedence over other options except KeepNone

KeepNoi No currents will be saved except signals explicitly defined using .KEEP or
.GRAPH. Takes precedence over other options except KeepNone

KeepNod No digital signals will be saved except signals explicitly defined using
.KEEP or .GRAPH. Takes precedence over other options except
KeepNone

KeepAll All data saved including data inside subcircuits. Does not enable saving of
internal data (use KeepInternal) or semiconductor AC currents (use
KeepAllAci).

KeepTop Disables saving of subcircuit signals

KeepAllAci Save currents in semiconductor devices for AC analysis

KeepInternal Save device internal signals

KeepSubcktDepth Limits saving of data in subcircuits to the specified level. E.g.
KeepSubcktDepth=2 will save data in top level, first level subcircuits and
second level subcircuits

KeepQuotaFactor Number between 0.0 and 1.0 restricts data output following precedence
rules. 0.0 will save no data whereas 1.0 will save all data as defined by
other options. KeepQuotaFactor is applied after all other keep options.
Note that the factor is an estimate.

217
SIMetrix Simulator Reference Manual

6.14. .KEEP

Examples

Default with no Keep options is to save all top level data and all signals inside hierarchical subcircuits.
Data inside non-hierarchical subcircuits are not saved.

Don’t save any data except signals defined in .KEEP or .GRAPH statements:
.OPTIONS KeepNone

Save all data except device internals and semiconductor currents in AC analyses. Includes data inside
subcircuits and hierarchies:

.OPTIONS KeepAll

Save everything including device internals and semiconductor currents in AC analyses:
.OPTIONS KeepAll KeepAllAci KeepInternal

Don’t save currents:
.OPTIONS KeepNoi

Save signals in the top level and the first level in the hierarchy:
.OPTIONS KeepSubCktDepth=1

Save about 20% of all data:
.OPTIONS KeepQuotaFactor=0.2

Store only voltages and currents in sub-circuit X1 excluding descendants.
.OPTIONS KeepNone
.KEEP X1.*v X1.*i

Store only voltages and currents in sub-circuit X1 including descendants.
.OPTIONS KeepNone
.KEEP X1.**v X1.**i

Store voltages within U3.U12 along with VOUT and VIN
.OPTIONS KeepNone
.KEEP U3.U12.*v VOUT VIN

Store all top level voltages and currents in U7
.OPTIONS KeepNone
.KEEP U7.*i

Notes

.KEEP may be used inside a sub-circuit definition in which case .KEEP operates at a local level. For
example .KEEP *v inside a sub-circuit definition specifies that all voltages within that subcircuit (for all
instances) will be saved. .KEEP **v does the same but also includes any descendant sub-circuit instances.

SIMetrix uses subcircuits to implement hierarchical schematics. Subcircuits are also used in other ways,
for example to implement device macro models. SIMetrix is able to distinguish between subcircuits used
for hierarchies and other subcircuits. It does this by placing a comment line below the .SUBCKT line as
shown below:

.subckt fastamp VOUTP VN VINP VP VINN VOUTN

*#hierarchy
...
.ends

The comment line *#hierarchy marks the subcircuit as part of the schematic hierarchy. The schematic
editor’s netlist generator automatically adds *#hierarchy lines as appropriate.

218
SIMetrix Simulator Reference Manual

6.16. .LIB

6.15 .LOAD

.LOAD file [instparams=parameter_list] [nicenames=0|1] [goiters=goiters]
[ctparams=ctparams] [suffix=suffix] [warn=warnlevel]

Loads a device file. This may be a Verilog-A file or a compiled binary (.sxdev file).

file Specifies either a Verilog-A file or a .SXDEV file. If the extension is
.SXDEV, no compilation will be performed and the specified file will be
loaded directly. The remaining options will not be recognised in this case.
Otherwise the file will be assumed to be a Verilog-A file and will passed to
the Verilog-A compiler. This will compile the file to a .sxdev binary and
then load it

parameter_list A list of parameter name separated by commas. There should be no spaces
in this list. Each parameter in this list will be defined as an instance
parameter. Refer to the Verilog-A User Manual for further details

goiters Specifies the number of global optimiser iterations. The default is 3. A
higher number may improve the execution speed of the code at the
expense of a longer compilation time. In practice this will only have a
noticeable effect on very large Verilog-A files. Setting the value to zero
will disable the global optimiser. This is likely to slow execution speed a
little. The global optimiser is an algorithm that cleans up redundant
statements in the ‘C’ file.

ctparams defines ‘Compile-time parameters’ and is a list of comma-separated
parameter name/value pairs in the form name=value. Any parameters
listed will be substituted with the constant value defined during
compilation as if it were entered as a literal constant in the Verilog-A code.
This feature is especially useful for items such as array sizes and vectored
port sizes. A considerably more efficient result will be produced if the
values of such items are known at compile time.

warnlevel sets a filter for warning messages. If set to zero, no warnings will be
displayed. If set to 2, all warnings will be displayed. The default is 1
which will cause most warnings to be displayed but will omit those that
are less serious.

6.16 .LIB

There are two forms of .LIB and the behaviour of each is completely different from each other. The
SIMetrix Native Form specifies a file or group of files to be searched for any model or subcircuit that has
not yet been found. The HSPICE® version is a selective version of .INC but unlike .INC it doesn’t include
the whole file, just a specified portion of it.

6.16.1 SIMetrix Native Form

.LIB pathname

pathname File system path name specifying a single file or, by using a wildcard (* or
?), a group of files. If the path name contains spaces, it must be enclosed
in quotation marks (").

219
SIMetrix Simulator Reference Manual

6.17. .MAP

The SIMetrix form of this statement specifies a pathname to be searched for model and subcircuit libraries.
Any number of .LIB statements may be specified and wildcards (i.e. * and ?) may be used.

If a model or subcircuit is called up by a device line but that definition was not present in the netlist,
SIMetrix will search for it in files specified using the .LIB statement.

SIMetrix will also search for definitions for unresolved parameters specified in expressions. These are
defined using .PARAM.

Example

The following statement instructs the simulator to search all files with the .mod extension in c:\Spice
Model Library\for any required subcircuits or device models.

.lib "c:\Spice Model Library*.mod"

6.16.2 HSPICE Form

.LIB `filename' entryname

filename File system path name specifying a single file.

entryname Name used to identify sections within filename

When HSPICE® the form of .LIB is encountered, SIMetrix will search the file specified by filename for a
section enclosed by:

.LIB entryname

and

.ENDL

.LIB calls may be nested as long as they are not recurrent. That is a .LIB call within a .LIB .ENDL block
may not call itself but it may call another block within the same file. (HSPICE® itself does not permit
this).

This form of .LIB is commonly used in model files issued by semiconductor fabrication plants which tend
to be designed for use with HSPICE®. The entry name parameter is used for process corner and skew
selection. Typically the model file would have entries for - say - slow, nominal and fast models. These
would reside under entry names of, perhaps, SS, NOM, and FF respectively. You can very rapidly switch
between these model sets simply by changing the entry name on the .LIB line e.g.

would select the nominal models. Changing to:

.LIB `c:\models\fab1\process_a\top.mod' NOM

would switch to the slow models.

6.17 .MAP

.MAP MODELNAME=modelname DEVICE=device LEVEL=level [LETTER=letter]
[REPORT=reportstatus]

Map simulator device to model name and level number.

modelname Model name as used on the .MODEL line

220
SIMetrix Simulator Reference Manual

6.17. .MAP

device Device name. See notes and List of All Simulator Devices

level Level parameter value used in .MODEL statement. Must be an
integer

letter Letter used in first character of instance name to identify device type. See
notes

reportstatus ON or OFF. If ON, a report will be displayed to confirm the
mapping

6.17.1 .MAP Notes

All device models (that is the binary code that implements the device equations) have an internal name that
is used to uniquely identify it, but this name is not used externally. Instead .MODEL statements use their
own name (e.g. nmos, pnp) coupled with an optional LEVEL parameter to define the actual device
referred to. For example, the MOS level 3 device is referred internally as "MOS3" but the .MODEL
statements use the names NMOS or PMOS and set the LEVEL parameter to 3. The mapping between
NMOS and LEVEL 3 to "MOS3" is defined in an internal table which can be modified by this statement.
The .MAP statement can add new entries to the table so providing additional methods of accessing a
device. It can also modify existing entries to point to a new device. To modify an existing mapping, you
only need to provide ModelName, Device and Level values. The modelname and level must point to an
existing combination that is already in use, e.g. ModelName=D and Level=1, and device would then be set
to the new device that this combination is to point to, e.g. Diode3. So this is what the spec would be:

.MAP ModelName=D,Level=1,Device=Diode3

The above would make level 1 diodes use the same model as level=3. Here is another example:

.MAP ModelName=R,Level=0,Device=HspiceRes

Level=0 is the level value when the LEVEL parameter is not specified. In the case of resistors, no
.MODEL statement is required at all, so the above line will change the default model used for all resistors
to the Hspice model instead of the native SIMetrix model.

It is also possible to add a new mapping in which case the level and modelname parameters must be
currently unused. Also when creating a new mapping the ‘Letter’ parameter must be specified. ‘Letter’ is
the first letter of the component reference traditionally used to identify the type of device in SPICE
netlists. For example ‘Q’ refers to BJTs and ‘D’ refers to diodes. or example, the following entries define
LEVEL=69 as a valid level for accessing the PSP 1.03 model:

.MAP ModelName=nmos,Level=69,Device=psp103_n,report=on

.MAP ModelName=pmos,Level=69,Device=psp103_n,report=on

Note that two entries are required in order to support both n-channel and p-channel devices. The above
doesn’t change the existing level it adds an additional level. Both the original level number and 69 will be
accepted and be equivalent. When defining a new mapping the letter must be specified and usually this
should be the letter conventionally used for the class of device. If defining a new mapping for a MOSFET,
the letter ‘M’ should be used, for a diode the letter ‘D’ should be used and so on. However, the letters, ‘N’,
‘P’, ‘W’, ‘U’ and ‘Y’ maybe used as well for any type of device.

6.17.2 Device Configuration File

.MAP statements affect only the simulation on the netlist in which they appear. Alternatively the same
re-mapping may performed more permanently using a device configuration file.

221
SIMetrix Simulator Reference Manual

6.17. .MAP

Creating a Device Configuration File

The device configuration file (DCF) path and name are defined by the option variable DevConfigFile. By
‘option variable’, we mean the variables assigned using the command line Set command not simulator
options set by .OPTIONS.

The default value for the setting is %SHAREPATH%/DeviceConfig.sxdcf, %SHAREPATH% resolves to
the support directory under the installation root.

Format

Each line in the DCF has the same format as the .MAP statement without the .MAP keyword:

Keyword Description

ModelName Model name used in .MODEL statement

Device Internal device name. See List of All Simulator Devices

Level Level parameter

Letter Device letter

Report Value on or off. If on a report of the device mapping will be displayed in
the command shell when SIMetrix starts.

The meaning of each of the above is the same as described for the .MAP statement

Example

The following shows the DCF needed to remap the PSP 1.03 device as described above for the .MAP
statement.

ModelName=nmos,Level=69,Device=psp103_n,report=on
ModelName=pmos,Level=69,Device=psp103_n,report=on

6.17.3 List of All Simulator Devices

A list of all internal devices may be obtained using the show_devices script. This will copy to the system
clipboard a tab delimited table listing all internal devices. This is guaranteed to be accurate as it is
generated directly by SIMetrix. To obtain this table proceed as follows:

1. Type this at the command line. (The edit box below the menu bar in the command shell. This is not
available in the free SIMetrix Intro)

show_devices

2. You should see a message “Device information has been copied to the system clipboard” appear

3. Using a spreadsheet program, execute the Paste function. You should see the table appear.

The table has seven columns:

Column 1: Internal name. This is the device name

Column 2: Model name as used in the .MODEL statement

Column 3: Level.

Column 4: Minimum number of terminals that this device must have

222
SIMetrix Simulator Reference Manual

6.18. .MODEL

Column 5: Maximum number of terminals that this device may have

Column 6: Device letter

Column 7: Model Version

Column 8: License feature required to use this device

Some internal devices have a model name beginning with ‘$$’. These device do not use a .MODEL
statement and have no model parameters. The name is used internally only.

Devices with a minimum number of terminals of -1 do not have a minimum number. Similarly devices
with zero maximum number of terminals do not have a maximum.

6.18 .MODEL

.MODEL modelname modeltype (param1=val1 [param2=val2]...)

.MODEL modelname ako:inherited_name modeltype (param1=val1 [param2=val2]...)

This statement specifies a set of model parameters that are used by one or more devices. .model statements
often reside in model libraries.

modelname Model name. Any text string to uniquely identify model. Must begin with
a letter but may contain any legal ASCII character other than a space and
period ‘.’

modeltype Model type. See tables below for possible values

param1, param2
etc.

Parameter name. Valid values depend on the model type. (See Simulator
Devices)

inherited_name Model inherits parameters from inherited_name. Any further parameters
override the inherited model. Note that modeltype must be the same as the
inherited model

val1, val2 etc. Parameter value

6.18.1 XSPICE Model Types

Model name Description

ad_converter analog-to-digital converter

adc_bridge analog-to-digital interface bridge

adc_schmitt analog-to-digital schmitt trigger

cm_cap Capacitor with voltage initial condition

cm_ind Inductor with current initial condition

d_and digital n-input and gate

d_buffer digital one-bit-wide buffer

d_cap Digital capacitor

d_dff digital d-type flip flop

d_dlatch digital d-type latch

d_fdiv digital frequency divider

d_init Digital initial condition

223
SIMetrix Simulator Reference Manual

6.18. .MODEL

Model name Description

d_inverter digital one-bit-wide inverter

d_jkff digital jk-type flip flop

d_logic_block arbitrary logic block

d_nand digital n-input nand gate

d_nor digital n-input nor gate

d_open_c digital one-bit-wide open-collector buffer

d_open_e digital one-bit-wide open-emitter buffer

d_or digital n-input or gate

d_osc controlled digital oscillator

d_pulldown digital pulldown resistor

d_pullup digital pullup resistor

d_pulse digital pulse

d_ram digital random-access memory

d_res Digital resistor

d_source digital signal source

d_srff digital set-reset flip flop

d_srlatch digital sr-type latch

d_state digital state machine

d_tff digital toggle flip flop

d_tristate digital one-bit-wide tristate buffer

d_xnor digital n-input xnor gate

d_xor digital n-input xor gate

da_converter digital-to-analog converter

dac_bridge digital-to-analog interface bridge

s_xfer s-domain transfer function block

6.18.2 SPICE Model Types

Model name Description

ACTABLE AC Table Lookup (including S-Parameters)

C, CAP Capacitor

CORE Inductor (Saturable)

CORENH Inductor (Saturable)

D Diode - Level 1 and Level 3

HICUM_211 Bipolar Junction Transistor (HICUM)

LPNP Lateral PNP Bipolar Junction Transistor (SPICE Gummel Poon)

LTRA Lossy Transmission Line

NIGBT Insulated Gate Bipolar Transistor

224
SIMetrix Simulator Reference Manual

6.19. .NOCONV

Model name Description

NJF N-channel Junction FET

NMOS N-channel MOSFET

Also many other types. See table of contents

NPN NPN Bipolar Junction Transistor (SPICE Gummel Poon)

Also VBIC, Mextram and Hicum devices

PJF P-channel Junction FET

PMOS P-channel MOSFET

Also many other types. See table of contents

PNP PNP Bipolar Junction Transistor (SPICE Gummel Poon)

PSP102 PSP MOSFET

R, RES Resistor

R3_CMC CMC Resistor

SRDIO Diode - Soft Recovery

SW,
VSWITCH

Voltage Controlled Switch

VSXA Verilog-HDL Interface (VSXA)

6.18.3 Safe Operating Area (SOA) Limits

It is possible to define SOA limits within the .MODEL statement. To do this, add one or more parameters
in the following format:

LIMIT(name)=(min, max, xwindow)

name Name of quantity to test. See format for access variables useable when
MODEL is specified for a .SETSOA statement. This is described in
.SETSOA. E.g. use ‘LIMIT(vcb)’ to specify the limits for the
collector-base voltage of a BJT.

min, max As described in .SETSOA.

xwindow As described in .SETSOA.

6.18.4 Example

The following is a model for a 1N5404 diode.

.MODEL D1n5404 D(Is=15.48f Rs=7.932m Ikf=0 N=1 Xti=3
+ Eg=1.11 Cjo=150p M=.3 Vj=.75 Fc=.5
+ Isr=120n Nr=2 Bv=525 Ibv=100u)

6.19 .NOCONV

.NOCONV V(node1)=val1 [V(node2)=val2]...

Disables convergence testing for the specified nodes.

225
SIMetrix Simulator Reference Manual

6.20. .NODESET

6.20 .NODESET

.NODESET V(node1)=val1 [V(node2)=val2]...

OR

.NODESET node1 val1 [node2 val2]

This statement sets an initial guess voltage at the specified node for the dc operating point solution.

node1, node2 etc. Name of circuit node (or net) to which nodeset is to be applied. See notes
below.

val1, val2 etc. Nodeset voltage to be applied. May be an expression containing
parameters defined using .PARAM

Initially nodesets work exactly the same way as initial conditions. The nodeset voltage is applied via a 1
Ohm (by default but can be changed using NODESETRES option - see .OPTIONS) resistor and the
solution is completed to convergence (by any of the methods). The nodeset is then released and the
solution repeated. If the nodeset voltage is close to the actual solution the convergence of the second
solution should be rapid.

Nodesets can be used to force a particular solution for circuits that have more than one stable state.
Consider the following circuit:

226
SIMetrix Simulator Reference Manual

6.21. .NOISE

A nodeset has been applied to the collector of Q1. This has forced Q1 to be on and Q2 to be off. If the
nodeset were absent the solution would actually leave both Q1 and Q2 partially on. In real life this would
not be stable but it is numerically accurate.

The other application of nodesets is to help convergence for the DC bias point. With SIMetrix, it is rarely
necessary to use nodeset’s to find the DC solution of a circuit. They can, however, be useful for speeding
up the operating point analysis for circuits that have already been solved. You may wish to do this for a
Monte-Carlo analysis, for example. SIMetrix features a method of creating nodesets for this purpose using
the SaveRhs command. See Using Nodesets.

Nodeset’s should not be confused with initial conditions. (see .IC). Initial conditions tie a node to a
particular voltage and keep it there throughout the DC operating point analysis. Nodesets merely suggest a
possible solution but do not force it.

6.21 .NOISE

.NOISE inner_sweep_spec [V] pos_node [VN] neg_node
+ [[INSRC] in_source]
+ [F frequency] [RUNNAME=runname] [SWEEP outer_sweep_spec]

Spice Compatible:

.NOISE V(pos_node [, neg_out_node]) in_source
+ DEC|LIN|OCT num_points start stop interval

This statement instructs the simulator to perform a small signal noise analysis.

pos_node Node on circuit at which noise is measured.

neg_node Node to which outputnode is referenced. Defaults to ground if
omitted.

in_source Input source (i.e. voltage or current) to which the input noise measurement
is referred.

inner_sweep_spec See General Sweep Specification for syntax. Defines sweep mode. FREQ
keyword is optional.

outer_sweep_spec If specified, analysis will be repeated according to this specification. See
General Sweep Specification for syntax.

LIN Analysis points are linearly spaced.

DEC Analysis points are logarithmically spaced in decades

OCT Analysis points are logarithmically spaced in octaves

num_points
LIN: Total number of points

DEC: Number of points per decade

OCT: Number of points per octave

start Start frequency

stop Stop frequency

interval Currently does nothing. Provided for backward compatibility.

runname If specified, the value for runname will be passed to the simulation data
group as a string variable with name UserRunName. This may be used to
identify which analysis generated the data which is useful when running
netlists with multiple analyses defined

227
SIMetrix Simulator Reference Manual

6.21. .NOISE

6.21.1 Notes

During noise analysis the simulator calculates the total noise measured between pos_node and neg_node at
each frequency point. It also calculates and outputs this noise referred back to an input specified by
in_source. As for all other analysis modes a DC operating point analysis is carried out first but, unlike AC
analysis, the results of this analysis are not made available. The simulator outputs vectors covering the
contribution from each noise generating device to the total output noise. The names of these vectors begin
with the component reference of the device followed by a suffix to indicate the source of the noise within
the device. A listing of the suffixes is given below. It is important to note that it is not the noise being
generated by each device that is output but the proportion of that noise that is propagated to the output.

It is not necessary to specify a separate AC analysis alongside the noise analysis as it is with SPICE2 and
commercial derivatives of SPICE2.

The magnitude of any AC independent voltage or current source on the circuit has no effect on the results
of a noise analysis. Unlike SPICE and earlier versions of SIMetrix, it is not necessary to specify an AC
parameter for the source used for the noise input source. For the first form shown above, the input source
is in fact optional. If it is omitted the input referred noise will not be calculated.

All noise results are in V/
√

Hz except input noise referred back to a current source which is in A/
√

Hz. In
standard SPICE3 the noise values produced for MOS2 and BSIM3 devices are in V2/

√
Hz. For

consistency, these have now been changed to V/
√

Hz. The original SPICE3 behaviour can be restored by
setting the simulator option OldMosNoise (see .OPTIONS).

6.21.2 Device vector name suffixes

Device Type Suffix and Description

BJT #rc Noise due to collector resistance

#rb Noise due to base resistance

#re Noise due to emitter resistance

#ic Shot noise in collector

#ib Shot noise in base

#1overf Flicker (1/f) noise

no suffix Total transistor noise

Diode #rs Noise due to series resistance

#id Shot noise

#1overf Flicker (1/f) noise

no suffix Total diode noise

JFET and MOSFETs level 1-3 and
BSIM3

#rd Noise due to drain resistance

#rs Noise due to source resistance

#id Shot noise in drain

#1overf Flicker (1/f) noise

no suffix Total FET noise

228
SIMetrix Simulator Reference Manual

6.22. .OP

Device Type Suffix and Description

NXP MOS9 (all types see NXP
Compact Models)

#Sfl Flicker (1/f) noise

#Sth Drain thermal noise

#Sig Gate thermal noise

#Sigth Gate-drain correlated thermal noise

no suffix Total FET noise

Resistor #therm Resistor thermal noise

#1overf Flicker (1/f) noise

#noise Total resistor noise

Voltage controlled switch no suffix Total switch noise

6.21.3 Creating Noise Info File

Noise analysis generates vectors in the same way as all other swept analyses. Individual vectors may also
be tabulated in the list file using the .PRINT statement.

A noise output file may also be created from the front end. Select the command shell menu Graphs and
Data | Create Noise Output File to create a text file with a summary of noise results. Included is a list of
the integrated noise output for every device listed in order of magnitude. Select Graphs and Data | View
Noise Output File to view the file. Note that this is a front end feature and is not implemented by the
simulator.

6.21.4 Examples

Run noise analysis from 100Hz to 1MHz with 25 points per decade. Calculate noise at node named vout
and noise referred back to voltage source vin:

.NOISE V(vout) vin dec 25 100 1meg

Decade sweep resistor RSource from 100 to 10K with 25 points per decade. Frequency = 1kHz

.NOISE DEVICE RSource DEC 25 100 10k F=1K

6.22 .OP

.OP

This statement instructs the simulator to perform a DC operating point analysis. Note that a DC operating
point analysis is carried out automatically for transient (unless the UIC parameter is specified), AC, DC,
transfer function and noise analyses.

DC operating point analysis attempts to find a stable bias point for the circuit. It does this by first applying
an initial guess and then uses an iterative algorithm to converge on a solution. If it fails to find a solution
by this method the simulator then attempts three further strategies.

For the first, a method known as ‘source stepping’ is employed. For this all voltage and current sources in
the circuit are initially set to near zero and the solution found. The sources are then gradually increased
until they reach their final value.

229
SIMetrix Simulator Reference Manual

6.22. .OP

If this approach fails a second strategy ‘GMIN stepping’ is invoked. This conditions the solution matrix by
increasing the diagonal term such that it is dominant. If large enough, convergence is virtually guaranteed.
If successful then the diagonal term is reduced and a further solution sought using the previous solution as
a starting point. This procedure is repeated until the diagonal term is returned to its correct value.
Increasing the diagonal term is in a way similar, but by no means identical, to placing a small resistance at
each node of the circuit.

If source stepping fails a final strategy, ‘pseudo transient analysis’ is invoked. This is the most powerful
technique employed and nearly always succeeds. However, it is also the slowest which is why it is left
until last. For more information on DC convergence see Convergence, Accuracy and Performance.

If the final approach fails then the analysis will abort.

IMPORTANT: It is not necessary to include .OP if other analyses are specified. All other analysis modes
will perform an operating point anyway so including .OP will simply cause it to be done twice. However,
with .NOISE, .TF, and .SENS the results of the operating point analysis are not output. If the bias point of
the circuit is required when running one of these analysis modes, a .OP will be needed.

6.22.1 ‘OFF’ Parameters

Some semiconductor devices feature the device parameter OFF. If there are devices in the circuit which
specify this parameter, the bias point solution is found in two stages. In stage 1 the devices with OFF
specified are treated as if their output terminals are open circuit and the operating point algorithm
completes to convergence. In stage 2, The OFF state is then released and the solution restarted but
initialised with the results of stage 1.

The result of this procedure is that OFF devices that are part of latching circuits are induced to be in the
OFF state. Note that the OFF parameter only affects circuits that have more than one possible DC solution
such as bistables. If the OFF parameter is specified in - say - an amplifier circuit - with a unique solution,
the final result will be the same. It will just take a little longer to arrive at it.

6.22.2 Nodesets

Nodesets work in a similar way to the OFF parameter in that the solution is found in two stages. In the first
the nodeset is applied and the solution found. It is then released and convergence continues. Nodeset are
an aid to convergence and, like the OFF parameter, can coerce a particular solution if there is more than 1
stable state. See .NODESET for details.

6.22.3 Initial Conditions

Initial conditions force a particular voltage at a circuit node during bias point solution. The force is
released for any subsequent analysis. See .IC for more details.

6.22.4 Operating Point Output Info

During the operating point analysis, operating point values of every device in the circuit are output to the
list file (see The List File). This information is not usually output for other analysis modes unless
explicitly requested. The output of operating point information is controlled by three simulator options:

NOOPINFO If set, the operating point info file is not created for .OP analysis

OPINFO If set, the operating point info file is created for other analyses as well as
.OP. (Does not apply to .SENS - operating point information is not
available for this mode at all)

OPINFOFILE Sets name of file to receive operating point info. Outputs to list file if this
option is not specified.

230
SIMetrix Simulator Reference Manual

6.23. .OPTIMISER

6.23 .OPTIMISER

.OPTIMISER
+ optparams=[parameter_names]
+ optinitvals=[initial_values]
+ [optminvals=[minimum_values]]
+ [optmaxvals=[maximum_values]]
+ alg=algorithm
+ [abstol=absolute_tolerance]
+ [reltol=relative_tolerance]
+ [iterlim=iteration_limit]
+ [schematic=schematic_file]
+ [results_file=results_file]
+ [show_progress]

Configures an optimiser session. Requires at least one analysis statement and one .OPTSPEC statement to
be present in the netlist. The .OPTIMISER statement defines the parameters, stop criteria and optimisation
algorithm.

The.OPTIMISER statement may be used with multiple analysis statements. If only a single analysis
statement is required it is also possible to use the multi-step analysis mode. For details see Multi-step
Analysis

parameter_names Names of parameters whose optimal value will be sought in the
optimisation process. This is a list of names separated by commas.
Parameters may be used in expressions to define model and instance
parameters in exactly the same way as the .PARAM statement

initial_values Initial values for the parameters. List of values separated by commas
corresponding directly with the parameter names. Values that will be used
initially. The optimiser will subsequently adjust these values

minimum_values Minimum values for the parameters. List of values separated by commas
corresponding directly with the parameter names. The optimiser will not
use values less than those specified here

maximum_values Maximum values for the parameters. List of values separated by commas
corresponding directly with the parameter names. The optimiser will not
use values greater than those specified here

algorithm Optimisation algorithm. Single word to define the algorithm to be used for
the optimisation analysis. See Algorithms for more information

absolute_tolerance Optimiser will stop when the objective function (defined using .OPTSPEC
statement) stabilises to an absolute value controlled by this
parameter

relative_tolerance Optimiser will stop when the objective function (defined using .OPTSPEC
statement) stabilises to a relative value controlled by this parameter

iteration_limit Optimiser will stop when this number of iterations reaches this
value

schematic_file Report purposes only. Path entered here will appear in the final
report

results_file XML file where full details of the optimiser session will be written. The
GUI can read this file and create an HTML report from it

show_progress If present, progress messages will be displayed while the optimiser is
running

231
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

6.24 .OPTIONS

.OPTIONS [opt1 [=val1]] ...

This statement allows the setting of various options specific to the simulator.

opt1 Option name. Must be one specified in list below.

val1 Option value. Note, boolean options do not have a value. They are
assigned “true” if the name is present and “false” if not.

6.24.1 List of simulator options

Option name Default
value

Description

ABSTOL 1p Units = A The absolute current error
tolerance. It is sometimes desirable
to increase this for circuits that carry
large currents (>1A) to speed the
solution and aid convergence.

ACCT false Full simulation timing statistics are
generated if this is enabled.

ADVCONVREPORT false Enables advanced convergence
reporting. Information from this can
be retrieved using the script function
GetNodeConvergenceInfo()

ALLACI false Instructs simulator to save all device
currents in an AC analysis. Usually,
only currents for simple devices are
evaluated and stored. Equivalent to
“.KEEP /allaci”, but unlike .KEEP,
.OPTIONS values can be defined on
the Run command line.

232
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

ALLOWDIVZERO 0 Set to 1 to allow division by constant
zero in arbitrary source expressions.
The result of dividing by zero when
enabled will be 1e30 for positive
numbers, -1e30 for negative numbers
and 0 for 0. If not enabled, a division
by zero will lead to an error and the
simulation will abort. This option
only affects division by a constant
value of zero and does not apply to
circuit variables. For example 1/a
where a is a parameter that is zero
will return 1e30. Conversely
1/V (n1) when node n1 reaches zero
is not affected by this option setting.
This option is automatically set to 1
if the option
PSPICECOMPATIBILITY is set to 1
or higher.

ANYVERSION false If true, version dependent models
such as BSIM3 and BSIM4 will be
unconditionally accepted even if an
invalid version parameter is
supplied.

BINDIAG false If enabled, a report about selection of
binned models will be output to the
list file. See Model Binning.

BINONTOTALWIDTH false For backward compatibility affecting
BSIM4 models. Multi-fingered
BSIM4 devices are binned according
to width per finger. SIMetrix
versions 5.3 and earlier binned
according to total width. Set this
option for version 5.3
behaviour.

BJTGMINMODE 0 Controls how GMIN is applied to the
standard BJT device (SPICE
Gummel-Poon model). Can be set to
0 or 1. When set to 0, GMIN
application is compatible with
SPICE and PSpice. When set to 1,
GMIN is applied as simple terminal
resistors across the BE and BC
junctions and is compatible with
Hspice

CHGTOL 1e-14 Units = Coulombs The absolute
charge tolerance.

CONV 0 Set to a value from 0 to 8. See
Iteration Modes for more
information

233
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

CSHUNT 0 Units = Farads. Capacitance placed
at all top level nodes to ground. If
CSHUNTSUB specified, capacitance
is placed at all nodes in the circuit.
No capacitance is placed to nodes
that already have a capacitor
connected to ground. By placing a
small capacitance at every node,
some transient analysis convergence
problems can be solved. A very
small value such as 100fF can often
be effective

CSHUNTSUB false Boolean. If specified CSHUNT
places capacitance to all nodes, not
just those at the top level. This
should be used with care if used in
circuits with subcircuit models
obtained from third-party vendors.
Some have very high impedance
internal nodes and their behaviour
can be adversely affected by even
very small additional
capacitance.

DCOPSEQUENCE gmin|
source|
pta

Operating point strategy sequence
order. See Controlling DC Method
Sequence for details

DEFAD 0 Unit = m2

Default value for MOSFET AD
device parameter. Applies to levels
1-3 and level 49/53. Does not apply
to level 8 or NXP MOS9
devices

DEFAS 0 Unit = m2

As DEFAD but for AS
parameter

DEFL 100µ Unit = metres As DEFAD but for L
parameter

DEFNRD 0 As DEFAD but for NRD
parameter

DEFNRS 0 As DEFAD but for NRS
parameter

DEFPD 0 Unit = metres As DEFAD but for PD
parameter

DEFPS 0 Unit = metres As DEFAD but for PS
parameter

DEFW 100µ Unit = metres As DEFAD but for W
parameter

234
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

DEVACCT false If true, the simulator will measure
load times for each device type
during a simulator run. This
information can be obtained using
the GetDeviceStats() script
function.

DIGMINTIME 1pS Unit = Seconds Minimum digital
resolution. Not yet fully
supported

DISABLESUBCKTMULTIPLIER false If true, the subcircuit multiplier
parameter, M, will be disabled. See
Subcircuit Instance.

DISCONTINUOUSIFSLEWRATE ∞ Sets slew rate of discontinuous
conditional expressions. See IF()
Function for more
information.

DISCONTINUOUSIFSLEWRATE_I ∞ Slew rate for discontinuous current
sources

DISCONTINUOUSIFSLEWRATE_V ∞ Slew rate for discontinuous voltage
sources

EXPAND false The netlist with subcircuits expanded
is output to the list file if this is
specified.

EXPANDFILE Only applies if EXPAND also
specified. Specifies a file instead of
the list file to receive the expanded
netlist.

FASTPOINTTOL 1.0 Value for POINTTOL used during
‘Fast transient start’. See
POINTTOL below.

FASTRELTOL 0.001 Value for RELTOL used during ‘Fast
transient start’.

FLUXTOL 1e-11 Unit = V.secs The absolute flux
tolerance for inductors.

FORCETRANOPGROUP false Forces a separate data group to be
created for transient analysis
operating point data. This happens
anyway if tstart>0. Use this option
when simulating a large circuit and
you wish to make extensive use of
schematic bias annotation. See
User’s Manual/Graphs, Probes and
Data Analysis/Viewing DC
Operating Point Results for more
details.

235
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

FULLEVENTREPORT false If true, the simulator will save all
event information. When false, only
major events are recorded. Events
can be obtained from the
GetSimulatorEvents() script function
and can be useful for diagnosing
failed runs.

GMIN 1e-12 Unit = Siemens (mhos) The
minimum conductance allowed by
the program. This has the effect of
placing a resistor = 1/GMIN in
parallel with every branch of the
circuit.

GMINMAXITERS 1000 Maximum total number of iterations
allowed for GMIN stepping
operating point algorithm. See
Source and GMIN Stepping for
details.

GMINMULT 10 During GMIN stepping the value of
GMIN is multiplied by a variable
factor at each step. This option is the
starting and maximum value of that
factor.

GMINSTEPITERLIMIT 20 Iteration limit for each step in GMIN
stepping. Increase to 100 for
compatibility with SIMetrix 2.0x and
earlier.

HSPICECOMPATIBILITY 0 Enables options to increase
compatibility with Hspice.
Equivalent to
HSPICEMODELS=1 TEMP=25 TNOM=25 MCHSPICE

HSPICEMODELS 0 Set to 1 to map some device models
to be compatible with Hspice

ICRES 1 Unit = ICRES. Initial condition
resistive force. See .IC for
details

INDUCTORLOSSTC 0 Applies a resistor across all inductors
in the circuit with a value set to
L/INDUCTORLOSSTC. Used to
help convergence

236
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

INHIBITATTOISOURCE 0 For compatibility with PSpice. If set
to 1, the ‘atto’ suffix when applied to
current sources will be ignored. E.g.
I1 1 2 1A

will be interpreted as a 1 Amp
source. With this option set to 0, the
source will be 1 atto-Amp, i.e.
1e-18A. This option is automatically
set to 1 by option setting
PSICECOMPATIBILITY=1

INITCONDMODE 0 Sets behaviour of capacitors and
inductors when given an initial
condition parameter (IC).

May have these values:

0 Berkeley SPICE
compatible mode
(default). IC parameter is
ignored unless UIC is
specified for transient
analysis

1 SIMPLIS compatible
mode. Forces hard initial
condition

2 PSpice compatible mode.
Forces soft initial
condition

For more information see Initial
Conditions

INVOMEGAMIN 1e-12 Minimum value of 1/(2.π.freq).
Affects some devices in AC analysis
when frequency is swept from
zero.

ITL1 100 DC iteration limit used for initial DC
operating point.

ITL2 50 DC iteration limit used for swept and
multi-step analyses.

ITL4 10 Normal transient timepoint iteration
limit. The behaviour of this
parameter is slightly different in
SIMetrix than other SPICE based
simulators. See Convergence,
Accuracy and Performance.

ITL7 40 Upper transient timepoint iteration
limit. This is specific to
SIMetrix.

237
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

JFETISRTEMPDEPOFF false Disables temperature dependence of
the ISR parameter in the JFET
model. This is for compatibility with
observed behaviour (as opposed to
documented behaviour) of
PSpice.

KEEPALL false Keep data inside all
subcircuits

KEEPALLACI false Enables saving current data for
semiconductor devices in AC
analysis

KEEPINTERNAL false Enables saving device internal data.
(Signals internal to primitive devices,
not subcircuits)

KEEPNOD false Disables saving digital data

KEEPNOI false Disables saving current data

KEEPNONE false Disables saving all data except items
explicitly requested using .GRAPH
or .KEEP

KEEPNOV false Disables saving voltage data

KEEPQUOTAFACTOR 1.0 Reduces data saved to a proportion
of the total specified by eliminating
on a priority basis

KEEPSUBCKTDEPTH -1 Keep data in subcircuits to defined
depth

KEEPTOP false Save only the data at the top level.
This is default behaviour but this
option overrides KEEPALL if this is
also specified

LOGICHIGH 2.2 Unit = Volts Upper threshold for
logic inputs. Other comments as for
LogicThreshHigh

LOGICLOW 2.1 Unit = Volts Lower threshold for
logic inputs. Other comments as for
LogicThreshHigh

LOGICTHRESHHIGH 5 Unit = Volts Output voltage for logic
high level. Used for & | and
operators for arbitrary source. See
Arbitrary Source for more
details.

LOGICTHRESHLOW 0 Unit = Volts Output voltage for logic
low level. Other comments as for
LogicThreshHigh

LTSPICECOMPATIBILITY 0 Enables features to allow LTspice
models to run. see LTspice®
Devices

238
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

LOGPARAMEXPRESSIONS false If true, a log of parameter
expressions in use will be output to
the list file

MAXEVTITER 0 (sets
internal
de-
fault)

Maximum number of event driven
passes allowed at each step. It is not
usually necessary to change this
value.

MAXOPALTER 0 (sets
internal
de-
fault)

Maximum number of alternations
between analog and event-driven
iterations. It is not usually necessary
to change this value

MAXORD 2 Maximum integration order. For
METHOD=TRAP maximum value
is 2. For METHOD=GEAR
maximum value is 6. There is rarely
any reason to change this
value.

MAXVDELTAABS 0.5 with MAXVDELTAREL, sets a limit
on the amount of change per
timestep for each node. Inactive if
MAXVDELTAREL less than or
equal to zero. See Voltage Delta
Limit for further details.

MAXVDELTAREL 0.0 See MAXVDELTAABS
above.

MC_ABSOLUTE _RECT false If set Monte Carlo distribution will
be rectangular for absolute
tolerances. Otherwise the
distribution will be Gaussian.

MCFIXEDSEED 0 If greater than zero, fixes the seed for
Monte Carlo analyses meaning that
all runs will use the same component
values. This intended to be used in
analyses where some other parameter
is randomly varied for example in a
real-time noise analysis.

MC_MATCH _RECT false If set Monte Carlo distribution will
be rectangular for matched
tolerances. Otherwise the
distribution will be Gaussian.

MCHSPICE false Boolean. Enables Hspice mode for
Monte Carlo distribution functions.
See Enabling Hspice Distribution
Functions for further
information

MCLOGFILE mclog.txt File name to receive Monte Carlo
log. See Log File.

239
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

MCUSELINEARDISTRIBUTION false Use a linear distribution for default
tolerances with Monte Carlo
analysis. If using TOL or MATCH
parameters the distribution used
follows a logarithmic characteristic.
Set this option to use a conventional
linear distribution.

METHOD trap Numerical integration method.
Either TRAP (default) or GEAR ".
More info: See Integration Methods
- METHOD option.

MINBREAK See
notes

Unit = Seconds Minimum time
between transient analysis
breakpoints. A breakpoint is a point
in time when an analysis is forced
regardless of whether it is required
by the timestep selection algorithm.
Typically they are set at known
turning points such as the start and
end of a rising pulse. If two
breakpoints are closer than
MINBREAK they are merged into
one. (there are exceptions to this e.g
if the two breakpoints were
generated by a single rising edge).
Increasing MINBREAK can
sometimes help convergence and
simulation speed. The default value
is maximum-timestep*1e-7 or 1e-14
whichever is the larger.

MINGMINMULTIPLIER 1.000001 In GMIN stepping, the step size is
multiplied by variable factor at each
step. This step is reduced if
convergence fails. If it is reduced
below this value, the GMIN
algorithm will abort and the next DC
operating point strategy will be
invoked.

MINLTETIME 0 Minimum time forced by LTE error
control algorithm. Currently
experimental

MINTIMESTEP 1e-9 *
Max time
step

Unit = Seconds Minimum transient
time step. Simulation will abort if it
reaches this value. See .TRAN for
value of Max time step.

MOSGMIN GMIN Value of GMIN used between drain
and source of MOSFETs. See
MOSFET GMIN
Implementation.

240
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

MPNUMTHREADS 0 Sets number of threads (i.e. cores) to
be used for simulation. The
simulator will choose if set to zero
(default value). See Using Multiple
Cores for Single Step Runs.

NEWGMIN false Changes the implementation of
GMIN for ‘old’ MOS devices i.e.
LEVELs 1-3. When this option is
set, GMIN is implemented as a
conductance between source and
drain. Otherwise two conductances
are added between drain and bulk
and source and bulk. See MOSFET
GMIN Implementation.

NOCUR false Equivalent to “.KEEP /noi”. Inhibits
the saving of current data.

NODELIMIT 1e50 Unit = Volts Maximum value
allowed for circuit node during
iteration. If exceeded, iteration will
abort. (This does not usually mean
the analysis will abort). Reducing
this value can sometime solve
floating point exceptions or
unexplained singular
matrices.

NODESETRES 1.0 Unit = Ohms Driving resistance of
nodeset force. See .NODESET for
details.

NOECHO false Inhibits display of netlist in list
file.

NOMCLOG false If specified, no Monte Carlo log file
will be created. See Log File for
details.

NOMOD false If specified, no model parameter
report will be output to the list
file.

NOMOS9GATENOISE false If specified, the drain induced gate
noise model for MOS9 devices will
be disabled. See NXP Compact
Models.

NOOPALTER false If specified, only a single pass will be
made to resolve the operating point
for event driven devices.

NOOPINFO false Switches off creation of operating
point info file for .OP analyses. See
.OP for more details.

241
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

NOOPITER false Use GMIN stepping for DC
operating point analysis first. (i.e
skip normal iteration method)

NOSKIPPOINTS false The simulator will not output data
points that have time steps that are
below the resolution of the waveform
viewer. This happens when
δt < t ∗ 2.2 ∗ 10−16. Such points
will show as having the same time
value and can results in erroneous
behaviour in measurement functions.
Setting this option will disable
skipping points so that all data is
output. Note that a warning is
written to the list file when data
points are skipped.

NORAW false Output transient analysis values at
intervals of tstep only. See
.TRAN.

NOSENSFILE false Switches off creation of the
sensitivity report. Sensitivity results
may still be obtained from the data
group created. See .SENS

NoStopOnUnknownParam See
descrip-
tion

Specifies action to be taken in the
event of an unknown parameter
being encountered in a .MODEL
statement. Choices are:

TRUE: No action taken, simulation
continues normally.

FALSE: An error will be raised and
the simulation will abort.

WARN: A warning will be displayed
but the simulation will
continue.

The default value is set by a front
end “Set” variable of the same name.
This can be set using the menu File |
Options | General... under Model
Library tab. The “Set” variable
default is WARN.

If running in non-GUI mode the
default will be controlled by the
entry in the config file. See Global
Settings.

NOVOLT false Equivalent to “.KEEP /nov”. Inhibits
the saving of voltage data.

NOWARNINGS false Inhibits simulation warnings.

242
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

NUMDGT 10 Column width used for display of all
values in list file and Monte Carlo
log file. Minimum value is 8,
maximum is 30. Note this value is
column width not the number of
significant digits.

OLDLIMIT false If set SPICE 2 MOS limiting
algorithm is used. Affects MOS
Level 2 and 3

OLDMOSGMIN 0 Value of conductance placed
between drain-bulk and source-bulk
for BSIM3 and BSIM4 devices. Also
applies to LEVEL 1-3 and LEVEL
17 MOSFETs if NEWGMIN
parameter is set. See MOSFET
GMIN Implementation.

OLDMOSNOISE false MOS2 and BSIM3 devices return
device noise in V2/Hz for SPICE3
and earlier versions of SIMetrix
whereas other device’s noise is
returned in V/

√
Hz. From release 3

onwards all devices return noise in
V/
√

Hz. Setting this option restores
to behaviour of earlier
versions.

OPENSENSTABLE false If set, a sensitivity interactive table is
automatically opened in the GUI
after a sensitivity analysis has been
performed.

OPENWCREPORT false If set, a worst case HTML report is
automatically opened in the GUI
after a Worst-case analysis has been
performed.

OPINFO false If set DC operating point info file is
created for all analyses (except
.SENS). Normally it is created only
for .OP analyses.

OPINFOFILE false Specify name of operating point info
file. This is OP.TXT by
default.

OPTIMISE 2 Controls expression optimiser. 0=off,
1=on for .FUNC defined
expressions, 2=on always. See
Optimisation.

243
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

PARAMLOG Given Control amount of detail for
parameter log in list file.

Choices:
None: no parameters

listed

Brief: only parameters specified
using an expression are
listed

Given: parameters explicitly
specified in the netlist are
listed

Full: all parameters are
listed

PIVREL 1e-3 Tolerance for matrix pivot selection.
This rarely needs to be altered.
Reducing to 1e-4 can sometimes
improve simulation speed a little but
at higher risk of convergence failure.
Setting this parameter to a high value
e.g, 0.99 can sometimes fix
convergence problems but may slow
down the simulation. Valid values lie
between 0 and 1.

PIVTOL 1e-13 Only effective when
SPSOLVER=KSPARSE

This affects the matrix solution and
rarely needs to be altered. It is the
absolute minimum value for a matrix
entry to be accepted as a pivot.
Unexplained singular matrix errors
can sometimes be overcome by
lowering this value. (But note that
singular matrix errors are usually
caused by errors in the circuit such
as floating nodes or shorted voltage
sources).

POINTTOL 0.001 A factor used to control the extent to
which the maximum value attained
by a signal is used to control its
tolerance. This is new from release
4; set it to zero for pre release 4
behaviour. Increasing this value will
speed up the simulation at the
expense of precision. See Accuracy
and Integration Methods.

244
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

PSPICECOMPATIBILITY 0 Sets some option settings to values
compatible with PSpice. Can be set
to 0, 1 or 2. If set to 1, these options
are set

INHIBITATTOISOURCE=1
ALLOWDIVZERO=1
ICRES=0.002
INITCONDMODE=2

If set to 2 the options

SPICEMOSCHARGEMODEL=1
PSPICEGMIN

are also set in addition to the
above

PSPICEGMIN false Changes the default value from zero
to GMIN of some conductance
parameters as listed below. GMIN is
set using ".OPTIONS GMIN=gmin"
and has a default value of 1e-12

Device Parameter
Voltage Controlled
Current Source

GOUT

Current Controlled
Current Source

GOUT

Voltage Controlled
Switch

GIN

PTAACCEPTAT 0 If > 0, specifies a time when pseudo
transient analysis results will be
accepted unconditionally. This is
useful when a circuit comes close to
convergence during pseudo transient,
but doesn’t quite make it due to an
oscillation. See Pseudo Transient
Analysis.

PTACONFIG 0 Integer from 0 to 15 sets internal
parameters for pseudo transient
algorithm used to find DC operating
point. See Pseudo Transient
Analysis.

PTADCITERS 10 The number of DC iterations
attempted during a pseudo transient
analysis (PTA)

PTADELMIN 1e-
15

Minimum time step used for pseudo
transient analysis

245
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

PTAMAXITERS 20000 Maximum total number of iterations
allowed for pseudo transient
algorithm used to find DC operating
point. See Pseudo Transient
Analysis.

PTAOUTPUTVECS false If specified, signal vectors will be
output during pseudo transient
analysis. This may be used to
diagnose a failure. See Pseudo
Transient Analysis.

RELTOL 0.001 This is the relative tolerance that
must be met for each analysis point.
Reducing this number will improve
accuracy at the expense of simulation
time or/and convergence reliability.
Simulation results can not be relied
upon if its value is increased beyond
0.01. A more detailed discussion is
given in Accuracy and Integration
Methods.

RELOPTHRESHDETECT false If specified, relative operators used
in arbitrary source expressions
control the time step to detect the
threshold at which the operator
switches. See Relative Operators and
Functions

RELOPTHRESHTIMETOL 10e-
9

Default time tolerance for relative
operator and function threshold
detection. See Relative Operators
and Functions

RESTHRESH 1e-6 Resistance threshold. If a resistor is
specified that is below this value,
SIMetrix will use a voltage based
implementation (V=IR) instead of
the conventional current based
implementation (V=I/R). Voltage
based resistors are slightly less
efficient but allow R=0 without
numerical overflow

RSHUNT ∞ If specified a resistor of the specified
value is placed from every node to
ground. Excludes nodes that already
have a resistance connected to
ground. Also excludes nodes internal
to primitive devices - e.g. nodes
inside diodes and transistors to
implement terminal resistors.

246
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

RSHUNT_COMPAT false If specified, RSHUNT is also applied
to internal nodes and nodes that
already have a resistance connected
to ground

RSHUNT_NOSUB false If specified RSHUNT is only applied
at the top level - that is no resistor is
connected to nodes inside a
sub-circuit

RTNSEED 0 Seed used for real time noise

RTNRESEED false If specified a new random seed is
generated for each real-time noise
run. This is overridden by the
RTNSEED option. If neither
RTNSEED or RTNRESEED are
specified, the real-time noise seed is
fixed at the start of the simulation to
a consistent value meaning that
successive real-time noise runs will
be yield the same noise waveforms.
Note that each step in a multi-step
run will use a different seed.

SEED 0 Integer value. If non-falsezero will
be used to initialise random number
generator used for Monte Carlo
analysis distribution functions. See
Seeding the Random Number
Generator.

SENSFILE If specified, sensitivity analysis
results are written to this file instead
of the list file. See .SENS

SENSUSEEXPFORMAT false Number format for sensitivity
analysis report. If true, numbers are
displayed in exponential format,
otherwise numbers are in
engineering format. See
.SENS

SNAPSHOTFILE Specifies file name used to save
snapshot data. Defaults to netlist
name with .sxsnp extension. See
Snapshots

SOADERATING 1.0 Scales min and max values used in
.SETSOA specification. This allows
a de-rating policy to be globally
applied to SOA limits.

SOAEND ∞ Specifies end time point for SOA.
Use with SOASTART.

247
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

SOAMODE false Controls the Safe Operating Area
(SOA) test mode. See .SETSOA for
details on how to define a SOA
test.

Can set to:
Off SOA testing is not

enabled. In this mode
.SETSOA statements
will be read in and any
errors reported, but no
SOA testing will be
performed during the
run.

Summary SOA testing enabled
and results given in
summary form with
only the first violation
for each expression
given being
output.

Full SOA testing enabled
with full results given.
Every violation will be
reported in this
mode.

SOAOUTPUT list Can be:
msg Results displayed in

command shell message
window, or console if
run in “non-GUI”
mode.

list Results output to list
file.

msg|list Results output to both
list file and command
shell message
window.

none Results not output to
either list file or
message
window.

Note that all results are always stored
for retrieval using the script function
GetSOAResults. So even if “none” is
specified the SOA data is always
available.

SOASTART 0.0 Specifies start time for SOA. Use
with SOAEND

248
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

SOAWRITEDEFS false If specified, SOA definitions are
written to the list file

SOURCEMAXITERS 1000 Maximum total number of iterations
permitted for source stepping
algorithm. Set to zero to disable
limit

SPICEMOSCHARGEMODEL 0 Selects gate charge model used for
MOS Level 1, 2 and 3. 0: Meyer
capacitance model, 1:
Yang-Chatterjee charge conserving
model. The Yang-Chatterjee model
is compatible with PSpice

SPSOLVER KLU Can be KLU or KSPARSE. Sets
choice of matrix solver. See Matrix
Solver.

TEMP 27 Unit = °C Operating temperature of
circuit. Note this value can be
overridden locally for some devices.
You can also use .TEMP for
this.

TIMESTATS false Equivalent to ACCT

TNOM 27 Unit = °C Temperature at which
model parameters are defined. This
can be overridden in the model
statement.

TRTOL 7 This only affects transient analysis.
It is a relative value that is used to
determine an acceptable value for the
‘local truncation error’ before an
analysis point is accepted. Reducing
this value cause the simulator to
model the effects of energy storage
elements more accurately at the
expense of simulation time. See
Accuracy and Integration
Methods.

TRYTOCOMPACT false Forces compaction of data for lossy
transmission lines. This speeds up
simulation at the expense of
accuracy. Note this option applies to
the native lossy transmission line and
not the subcircuit based lossy line
model implemented using the
Laplace device

VERILOGDISABLEINTERNALVECTORS false If set, no data for Verilog internal
connections will be generated. See
Data Vector Output.

249
SIMetrix Simulator Reference Manual

6.24. .OPTIONS

Option name Default
value

Description

VERILOGDISABLEMODULECACHE false Disable cache of module
information. See Module Cache for
further details

VERILOGPORTPREFIX VSX$_ Connection names within the
SIMetrix-created top-level module
have this prefix.

VERILOGRESOLUTION 1e-
15

Timing resolution for Verilog
simulations. This is the smallest time
that can be resolved. The largest
time is this value multiplied by
264.

VERILOGROOTFILE vsx_root.v SIMetrix creates the Verilog
top-level module for each run and
stores it in a file with this
name

VERILOGROOTMODULE vsx_root Name given to Verilog top-level
module created by SIMetrix

VERILOGSIMULATOR Verilog simulator used for
mixed-signal Verilog-HDL
simulation. Name specified
references a section in the
VerilogHDL.ini file. With the default
configuration, this may be:

CVER - GPL Cver simulator

Icarus - Icarus Verilog
simulator

VERILOGUSECONSOLE false If set, a console window will be
created for the Verilog simulator.
Any output messages emitted by the
Verilog simulator will be output to
this console.

VNTOL 1µ Unit = V The absolute voltage error
tolerance. Circuits with large
voltages present (>100) may benefit
from an increase in this value. See
Accuracy and Integration
Methods.

WIDTH 80 Number of columns used for list file
output. This may be set to any
reasonable value and not limited to
the choice of 80 or 132 as with
SPICE2

WIRETABLE none Define file containing wire table used
for the digital simulator’s wire delay.
See Wire Delay.

250
SIMetrix Simulator Reference Manual

6.25. .OPTSPEC

Option name Default
value

Description

WRITEMCLOGHTML false If set, a Monte Carlo log file is
automatically generated after a
Monte Carlo analysis is
performed

WRITESENSHTML false If set, a sensitivity report HTML file
is automatically generated after a
Sensitivity analysis is
performed

WRITEWCHTML false If set, a worst-case HTML report file
is automatically generated after a
worst-case analysis is
performed

6.25 .OPTSPEC

.OPTSPEC
+ measure=expression
+ type=type
+ analysis=analysis_id
+ [op]
+ label=label
+ value=value

Defines a measurement to be made as part of an optimisation analysis. Any number of .OPTSPEC
statements may be defined but there must be at least one.

expression Expression to be evaluated for the analysis identified by analysis_id

type One of:
minimise Defines an objective function. Result to be

minimised

maximise Defines an objective function. Result to be
maximised

constraint_minimum Defines a constraint with minimum value
set by value parameter

constraint_maximum Defines a constraint with maximum value
set by value parameter

report_only Expression calculated and entered into
report but does not take part in
optimisation

analysis_id Arbitrary string used to identify the analysis line associated with the measurement.
Requires the parameter ANALYSIS_ID to be also added to the analysis line. For
example ".TRAN 1u 1m ANALYSIS_ID=tran_10"

op If present, expression is evaluated using the operating point data

label String used to identify measurement in reports. Can also be used as a variable in later
.OPTSPEC statements provided name complies with ‘C’ identifier naming
rules

251
SIMetrix Simulator Reference Manual

6.27. .PARAM

value For constraints this is compulsory and is the limit above or below which the optimiser
will attempt to maintain the expression. For the objective function, this is a stop
parameter and is optional. If the value is reached, the optimiser will finish

6.26 Notes

• There must be one and one-only objective function. That is an .OPTSPEC statement of type
minimise or maximise

• There can be any number of constraint functions

6.27 .PARAM

.PARAM parameter_name [=] parameter_value [parameter_name [=] parameter_value]...

.PARAM parameter_name [=] AGAUSS(nominal, abs_variation, sigma, [multiplier]) ...

.PARAM parameter_name [=] AUNIF(nominal, abs_variation, [multiplier]) ...

.PARAM parameter_name [=] GAUSS(nominal, rel_variation, sigma, [multiplier]) ...

.PARAM parameter_name [=] UNIF(nominal, rel_variation, [multiplier]) ...

Defines a simulation variable for use in an expression. Expressions may be used to define device
parameters, to define model parameters, for arbitrary sources and to define variables themselves. See
Using Expressions for details.

The syntax for the first form is described below. For details of the remaining forms (using AGAUSS,
AUNIF, GAUSS and UNIF) see Hspice Distribution Functions.

parameter_name Sequence of alpha-numeric characters. Must begin with a letter or
underscore. May not contain spaces.

parameter_value Either:

A constant

OR

An expression enclosed by ‘{’ and ‘}’. See Using Expressions.

6.27.1 Examples

.PARAM Vthresh = 2.4

.PARAM Vthresh = {(Vhigh+Vlow)/2}

.PARAM F0 1k Alpha 1 C1 {2*c2}

.PARAM R1 {2/(2*pi*freq*C1*alpha}

6.27.2 Netlist Order

.PARAM statements that resolve to a constant are order independent; they can be placed anywhere in a
netlist. They can even be placed after another .PARAM expression that depends on its value (but note this
does not apply in subcircuits). .PARAM statements that are defined as an expression that depends on other
.PARAMs also defined as an expression must be placed in sequential order. For example, the following is
OK:

252
SIMetrix Simulator Reference Manual

6.27. .PARAM

.PARAM C2 {C1*alpha*alpha/4}

.PARAM C1 1n

.PARAM alpha 1

.PARAM R1 {2/(2*PI*F0*C2*alpha}

The first .PARAM depends on alpha and C1 which are defined later in netlist. This is OK (as long as it is
not in a subcircuit) because icodealpha and C1 are constants. The fourth .PARAM depends on C2, which is
defined as an expression. The definition for must - and does in the above example - come before the
definition of R1. The following would yield an error as the definition for C2 comes after the definition of
R1:

.PARAM R1 {2/(2*PI*F0*C2*alpha}

.PARAM C1 1n

.PARAM alpha 1

.PARAM C2 {C1*alpha*alpha/4}

Note that .PARAMs inside subcircuits are local to the subcircuit. This is explained in next section.

6.27.3 Subcircuit Parameters

Parameters may be declared within sub circuits. E.g

.subckt ADevice n1 n2 n3 n4

.PARAM Vthresh 3.5

...

...
ends

In the above example, in reference to Vthresh within the subcircuit would use the value declared by the
.PARAM declared inside the subcircuit. That value would not be available outside the subcircuit
definition. Parameters may also be passed to subcircuits. E.g.

X1 1 2 3 4 ADevice : threshold=2.4

or

X1 1 2 3 4 ADevice params: threshold=2.4

Any reference to threshold within the subcircuit definition would use that value.

Default values for parameters may also be specified in subcircuit definition:

.subckt ADevice n1 n2 n3 n4 params: threshold=2.4

...

.ends

If that subcircuit is called without specifying threshold the default value of 2.4 will be used. Note that it is
not compulsory to declare default values.

6.27.4 Using .PARAM in Schematics

.PARAM statements may be appended to the netlist created by the schematic editor. For information on
how to do this, refer to Adding Extra Netlist Lines.

6.27.5 .PARAM in Libraries

.PARAM statements may be included in libraries specified using .LIB or by global definitions. SIMetrix
will search such libraries for any parameters used in expressions that are not found in the netlist.

253
SIMetrix Simulator Reference Manual

6.29. .PRINT

6.28 .POST_PROCESS

.POST_PROCESS scriptname [arguments]

Invokes the SIMetrix script scriptname at the end of a successful simulation. If present arguments will be
passed to the script as a single string.

scriptname may the name of an embedded file defined using .FILE and .ENDF. For example, the following
will cause the text “Simulation Complete” to be displayed in the command shell when the run is complete:

.FILE on_complete
Echo "Simulation Complete"
.ENDF
.POST_PROCESS on_complete

.POST_PROCESS may be used to perform measurements on simulation results for display in the
command shell or written to a file.

.POST_PROCESS scripts will function even if the simulator is operating in a standalone mode in which
case any displayed messages created from, for example, Echo or Show, will be directed to the simulator’s
output device. In console mode, this would be the console or terminal and in standalone GUI mode, this
would be the message window in the simulator status box. As there is no environment available in the
standalone mode, not all script commands and functions will be available.

For information about the SIMetrix script language, please refer to the SIMetrix script reference manual.

6.28.1 Important Note

When using .FILE and .ENDF with the SIMPLIS simulator, the text "SIMPLIS_PASS_THRU" must be
placed at the end of the .FILE statement:

.FILE on_complete SIMPLIS_PASS_THRU
Echo "Simulation Complete"
.ENDF
.POST_PROCESS on_complete

6.29 .PRINT

.PRINT TRAN|AC|DC|NOISE|TF vector|{expression} ...

Instructs the simulator to output selected simulation data to the list file in tabulated form.

Where:

vector Name of vector to print. May be in SIMetrix native format or traditional
SPICE format (see notes below).

expression Arithmetic expression of vectors

6.29.1 Notes

A traditional SPICE2 command, this was not supported by SIMetrix until release 4.0. It is SPICE2
compatible but also supports some additional features:

• NOISE and TF results may be output as well as TRAN, AC and DC

• You can put expressions as well as single values enclosed in ‘{’ and ‘}’. E.g.

.PRINT TRAN {vout-q5_c}

254
SIMetrix Simulator Reference Manual

6.29. .PRINT

You can use the SPICE2 style method of accessing single voltages, differential voltages and device
currents. These are of the form:

Single ended voltage

funcname(nodename)

Differential voltage

funcname(nodename, nodename)

Device current

funcname(device_name)

Where:

funcname Function to be applied. For available list, see below.

nodename Node name as specified in the netlist.

device_name Name of device for current.

Available functions:

Function name Argument Analysis mode Meaning

V node name Transient Voltage at node

V node name AC Voltage magnitude at node

VM node name AC Voltage magnitude at node

VP node name AC Voltage phase at node

VR node name AC Real voltage at node

VDB node name AC dbV at node

VG node name AC group delay at node

I two term. device name TRAN Current in device

IB BJT name TRAN Base current

IB MOSFET name TRAN Bulk current

IC BJT name TRAN Collector current

ID MOSFET/JFET name TRAN Drain current

IE BJT name TRAN Emitter current

IG MOSFET/JFET name TRAN Gate current

IS MOSFET/JFET name TRAN Source current

IS BJT name TRAN Substrate current

IM Two term device AC Device current

IP Two term device AC Current phase

IR Two term device AC Current real part

II Two term device AC Current imaginary part

IDB Two term device AC Current dB

IG Two term device AC Current group delay

255
SIMetrix Simulator Reference Manual

6.30. .SENS

.PRINT statements may be placed inside a subcircuit definition in which case the device and node names
refer to local devices and nodes. Output will be listed for every instance of the subcircuit.

For transient analysis the results are displayed at the interval specified by the time step parameter on the
.TRAN statement. If this is zero or omitted, it defaults to (tstop-tstart)/50. The data is created by
interpolation unless the NORAW option (see .OPTIONS) is specified in which case a time step is forced at
the time step interval.

6.29.2 Examples

.PRINT TRAN V(VOUT)

.PRINT TRAN VOUT

.PRINT TRAN V(VPos, VNeg)

.PRINT TRAN {Vpos-VNeg}

.PRINT AC VDB(VOUT)

6.30 .SENS

.SENS V(nodename [,refnodename])| I(sourcename)

This statement instructs the simulator to perform a DC sensitivity analysis. In this analysis mode, a DC
operating point is first calculated then the linearised sensitivity of the specified circuit voltage or current to
every model and device parameter is evaluated. The results are output to the list file and they are also
placed in a new data group. The latter allows the data to be viewed in the message window (type Display)
at the command line and can also be accessed from scripts for further analysis.

The number format used in the list file can be controlled by the SENSUSEEXPFORMAT option. By
default engineering format is used but this can be changed to exponential format with the setting:

.options SENSUSEEXPFORMAT

Instead of the results being written to the list file, they may alternatively be written to a text file using the
SENSFILE option:

.options SENSFILE=<filename>

6.31 .SETSOA

.SETSOA [LABEL=label] [MODEL=modelname | INST!=instname] [DEVICE=device]
[!DERATING=derating] [MEAN] [ALLOWUNUSED] [ALLOWWILD]
expr1=(min1, max1[, xwindow1]) [expr2=(min2, max2[, xwindow2]) ...]

Defines a Safe Operating Area (SOA) specification. If SOA testing is enabled the simulator will check
simulated results against this specification and record any violations. See .OPTIONS setting SOAMODE
for details on how to enable SOA tests.

The results of SOA testing are output to the list file by default and can optionally also be displayed in the
command shell message window, or console window if run in non-GUI mode. They are also always
available via a script function GetSOAResults(). See .OPTIONS setting SOAOUTPUT for more details.

256
SIMetrix Simulator Reference Manual

6.31. .SETSOA

label Optional label that will be included in every violation report. You can use
the following symbolic values in this label:

%INST% - substituted with the instance name that violated the
specification. This is only meaningful if MODEL or INST are specified.
(See below)

%MODEL% - substituted with the model name that violated the
specification. Only meaningful if MODEL is specified. (See
below)

%EXPR% - substituted with the expression that violated the
specification.

%SUBCKT% - applicable if the .SETSOA command is located within a
.SUBCKT definition. Value is substituted with the subcircuit instance
reference.

modelname If specified the expression or expressions supplied in expr1 etc. are
applied to every instance belonging to modelname. In this case the
expression may refer to node voltages and pin currents for each instance
processed. See details under expr1, expr2...

instname If specified the expression or expressions supplied in expr1 etc. are
applied to the specified instance (e.g. Q23, M10, R56). In this case the
expression may refer to node voltages and pin currents of the specified
instance. See details under expr1, expr2...

device If INST or MODEL is specified using a wildcard specification, only
instances of the specified device type will be processed. For example:
.SETSOA INST=* DEVICE=resistor...

will be applied to all resistors in the circuit. See List of All Simulator
Devices for a list of device names.

derating Derates limit specification by specified factor. Default is 1.0 which means
no derating. Value must be greater than 0. An expression containing
values defined using .PARAM may be used.

257
SIMetrix Simulator Reference Manual

6.31. .SETSOA

expr1, expr2... Expression to be evaluated and compared against minimum and maximum
specs. This expression can access simulation results using access
variables. The format and scope of these variables depends on whether
MODEL, INST or neither is specified.

If neither is specified, the expression can use the global access variables
defined below:

Syntax Function Example

nodename Voltage on
node

VOUT - voltage on
node VOUT

n(nodename) Voltage on
node

n(VOUT) - voltage
on node
VOUT

instname#param Instance
parameter

M2#vdsat - vdsat
value for M2

Q23#c - current in
collector of
Q23

paramname Parameter defined
using
.PARAM

If there is a clash between a paramname and nodename, that is if the same
name could refer to either a node or a parameter, then the parameter name
takes precedence. To access the node in this case, use the n(nodename)
syntax.

258
SIMetrix Simulator Reference Manual

6.31. .SETSOA

Use the following values if MODEL or INST is specified. In each case
(excepting the global access variable) the variable accesses a quantity for
the instance being processed. With INST this will be the single instance
specified by instname. With MODEL all instance belonging to the model
specified by modelname will be processed.

Syntax Function Example

pinname Current in
pin

c - current in
collector of
transistor

Ipinname Current in
pin

Ic - current in
collector of
transistor

Ipinname_m Current in pin scaled
according to
multiplier (e.g. M
parameter).
Equivalent to
Ipinname/M

Ic_m - current in
collector of transistor
scaled by
multiplier.

Vpinname Voltage on
pin

Vc - voltage on
collector of
transistor

n(pinname) Voltage on
pin

n(c) - voltage on
collector of
transistor

Vxy Where x = pin
name 1, y= pin name
2. Both x and y must
be single
letters

Voltage between x
and y.

Vbc - voltage from
base to
collector

pow Power in
device

pow_m Power in device
scaled according to
multiplier.
Equivalent to
pow/M

param Readback
parameter

vdsat - ‘vdsat’ for
MOSFET

#global_name Global node voltage
or pin current

#VOUT - voltage on
net called
VOUT

#q23#c - current in
collector of
q23

paramname Parameter defined
using
.PARAM

Note that currently the use of V() and I() is not accepted and will result in
an error message being displayed.

259
SIMetrix Simulator Reference Manual

6.31. .SETSOA

min, max Minimum and maximum values respectively. A violation message will be
produced if the value of the associated expression is less than min or
greater than max. Use ‘*’ if the limit is to be ignored. E.g. (*, 15) will test
a maximum value of 15 but the minimum value will not be tested. min and
max values may be scaled using the .OPTIONS SOADERATING.

These values may be entered as expressions containing variables defined
using .PARAM.

xwindow Optional value specifies a minimum window that must be surpassed before
limit violations are registered. For example if 10u is specified for xwindow
for a transient analysis, then the limit must be exceeded continuously for
at least 10uS before the violation is recorded.

This value may be entered as an expression containing variables defined
using .PARAM.

ALLOWUNUSED If INST or MODEL are specified, an error will result if no instances to be
processed are found. If INST is specified the error will occur if instname
doesn’t exist. If MODEL is specified, the error will occur if there are no
instances using modelname even if modelname itself is valid.

This error will be inhibited if ALLOWUNUSED is specified

ALLOWWILD If specified, wildcards can be used for modelname and instname. In this
case SIMetrix will search for all devices that match the wildcard
specification. Use ‘*’ to match any sequence of characters and ‘?’ to
match a single character.

MEAN If specified all tests will be on the mean of the test expression over the
whole simulation run.

6.31.1 Examples

Test the voltage on the ‘p’ pin of R1. Will fail if it exceeds 0.5V

.setsoa INST=R1 vp=(*,0.5)

Test the power dissipation of R2. Fails if it exceeds 0.5mW

.setsoa INST=R2 pow=(*,0.5m)

Test the current into pin ‘p’ of R3. Fails if it exceeds 0.5mA

.setsoa INST=R3 ip=(*,0.5m)

Test the voltage across R4. Fails if it exceeds 0.85V for at least 100uS. Will be reported using label
“%INST%, high”, which resolves to “R4, high”

.setsoa LABEL="%INST%, high" INST=R4 vd=(*,0.85,100u)

Test the voltage across R4. Fails if it exceeds 0.7V for at least 500uS

.setsoa LABEL="%INST%, low" INST=R4 vd=(*,0.7,500u)

Tests voltage between ‘c’ and ‘e’ pins for all instances of model N1. Fails if voltage drops below -0.5V or
exceeds 25V

.setsoa MODEL=N1 vce=(-0.5,25)

Tests power all devices of type resistor. Fails if this exceeds 0.25W.

.setsoa INST=* ALLOWWILD DEVICE=resistor pow=(*,0.25)

260
SIMetrix Simulator Reference Manual

6.32. .SUBCKT and .ENDS

Tests the mean power in instance Q1. Fails if it exceeds “2*bjtderating”. “bjtderating” must be defined
using a .PARAM statement.

.setsoa LABEL="%INST%, pow(q1)" INST=Q1 MEAN pow=(*,2)
derating=bjtderating

Calculates the expression “n(c)*(q1#c-d1#p)+n(b)*q1#b+n(e)*(q1#e+d1#p)” and fails if its mean exceeds
1.0. Violations will be reported using label “%SUBCKT%, power”. Statement is intended to be placed in a
subcircuit definition block and “%SUBCKT%” will resolve to the reference of the subcircuit call.

.setsoa LABEL="%SUBCKT%, power" MEAN "n(c)*(q1#cd1#
p)+n(b)*q1#b+n(e)*(q1#e+d1#p)"=(*,1)

6.32 .SUBCKT and .ENDS

.SUBCKT subcktname n1 [n2]...
+ [[params:] param_name1 [=] param_value1
+ [param_name2 [=] param_value2]...]

This statement begins a subcircuit definition.

subcktname Subcircuit name. This must begin with a
letter but may contain any legal ASCII
character except any whitespace (space,
tab) or ’ . ’ . The name must be unique i.e.
no other subcircuits may have the same
name.

n1, n2 etc. Node names available externally. Must not
be zero.

param_name, param_value Parameter name and value. This sets
default values for parameters used within
the subcircuit. These values can be
overridden for each subcircuit instance.
See Using Expressions for more info.
Note that it is not compulsory to declare
default values for subcircuit
parameters.

IMPORTANT: Either the params: specifier or the first ‘=’ may be omitted but not both. If both are omitted
it becomes impossible for the netlist scanner to tell the difference between parameter names and node
names.

.ENDS [subcktname]

Terminates a subcircuit definition. subcktname may be added for clarity but will be ignored by SIMetrix.

A subcircuit consists of a .subckt statement followed by a series of device or model descriptions and
terminating in a .ends statement. A subcircuit is a circuit that can be called into the main circuit (or indeed
another subcircuit) by reference to its name. The .subckt statement is used to define the subcircuit while a
subcircuit call - an ’X’ device - is used to create an instance of that subcircuit. Subcircuits have a number
of uses:

• To repeat a commonly used section of circuit.

• To hide detail from the main circuit to aid circuit readability.

• To distribute models of integrated devices such as op-amps.

261
SIMetrix Simulator Reference Manual

6.34. .TF

For a detailed discussion see Subcircuits.

Subcircuit definitions usually reside in a text file and are read in as libraries. See User’s Manual for further
details.

6.33 .TEMP

.TEMP temperature

This statement sets the default simulation temperature. Some devices can override this on a per instance
basis. Units are degrees centigrade.

6.34 .TF

.TF inner_sweep_spec [V] pos_out_node [VN] neg_out_node
+ [[INSRC] in_source] [F frequency] [RUNNAME=runname]
[SWEEP outer_sweep_spec]

.TF inner_sweep_spec I source [INSRC in_source]
+ [F frequency] [RUNNAME=runname] [SWEEP outer_sweep_spec]

Spice Compatible:

.TF V(pos_out_node [, neg_out_node]) in_source

.TF I (source) [INSRC] in_source

This statement instructs the simulator to perform a small signal transfer function analysis.

pos_out_node Output node.

neg_out_node Output reference node. Defaults to ground if omitted for standard SPICE
syntax.

in_source Name of input source to which input noise will be referred.

inner_sweep_spec See General Sweep Specification for syntax. Defines sweep mode.

outer_sweep_spec If specified, analysis will be repeated according to this specification. See
General Sweep Specification for syntax.

frequency Frequency at which analysis will be performed for non-frequency sweeps.
Default 0.

source Voltage source to specify output current.

runname If specified, the value for runname will be passed to the simulation data
group as a string variable with name UserRunName. This may be used to
identify which analysis generated the data which is useful when running
netlists with multiple analyses defined

6.34.1 Notes

The SIMetrix transfer function analysis remains syntax compatible with the SPICE version but is
substantially enhanced. The SPICE version performs the analysis at a single point with frequency = 0. The
SIMetrix implementation performs a swept analysis using the same sweep algorithm used for AC, DC and
NOISE.

Transfer function analysis is similar to AC analysis in that it performs a swept small signal analysis.
However, whereas AC analysis calculates the response at any circuit node from a (usually) single input

262
SIMetrix Simulator Reference Manual

6.35. .TRACE

source, transfer function analysis calculates the individual responses from each source in the circuit to a
single specified output node. This allows, for example, the series mode gain, common mode gain and
power supply rejection of an amplifier to be measured in one analysis. The same measurements could be
performed using AC analysis but several of them would need to be run. Transfer function mode also
calculates output impedance or admittance and, if an input source is specified, input impedance.

The names of the output vectors will be of the form

Input voltage, output voltage
source_name#Vgain

Input voltage, output current
source_name#Transconductance

Input current, output voltage
source_name#Transresistance

Input current, output current
source_name#Igain

Output impedance for voltage out will be called Zout. For a current output, the output admittance will be
calculated and will be named Yout.

If an input source is specified the input impedance will be calculated and called Zin.

Note that although the syntax for .TF retains compatibility with SPICE and earlier versions of SIMetrix,
the output provided is slightly different. Firstly, the data is complex even if F=0 and secondly the names of
the output vectors are different as detailed above.

6.34.2 Examples

SPICE compatible. Outputs results at DC.

.TF V(Vout) Vin

As above but decade sweep from 1k to 100k

.TF FREQ DEC 25 1K 100K V(Vout, 0) Vin

Note that in the above example the ‘0’ in V(Vout, 0) is compulsory. If is omitted, Vin will be assumed as
the reference node.

6.35 .TRACE

.TRACE vector_name [vector_name ...] graph_id

Set up a trace. This is graph plot that is updated as the simulation runs.

Where

vector_name is the name of a net or pin

graph_id is an integer between 1 and 999 to specify which graphs traces should use
- see explanation below

graph_id is an arbitrary number that makes it possible to direct traces to different graphs. Two traces with
the same id will be always be put in the same graph. Traces from subsequent simulations with that id will
also go to that graph if it still exists otherwise a new one will be created. To force two traces to go to
separate graphs, use different id’s. Note that it doesn’t matter what the id’s value actually is - it could be 1

263
SIMetrix Simulator Reference Manual

6.36. .TRAN

or 100 - as long as traces that must go to the same graph use the same value.

Note that the AutoAxis feature available for normal plotting also works for Traces. So if a current and
voltage trace are both directed to the same graph, separate axes will be created for them.

6.35.1 Examples

.trace v1_p 1 q1#c 1

In the above example a voltage - v1_p - and a current - q1#c - will both be traced on the same graph. As
they have different units, the AutoAxis feature will force the curves to two different y axes.

.trace v1_p 1 q1#c 2

In this example the voltage and current traces will be directed to different graph sheets.

6.35.2 Notes

The .TRACE statement has now been largely superseded by the .GRAPH statement (see .GRAPH), which
is much more flexible. However, the .TRACE statement is still useful for specifying multiple traces on a
single line. .GRAPH can only specify one signal at a time.

6.36 .TRAN

.TRAN tstop

OR

.TRAN tstep tstop [tstart [tmaxstep]] [UIC]
+ [SNAPSTEP sstart sstop sstep]
+ [SNAPSHOT slist]
+ [SNAPMODE=DCOP|SAVESTATE|ALL]
+ [FAST=fast_start] [RTNSTEP=rtnstep [RTNSTOP=rtnstop]
+ [RTNSTART=rtnstart]] [RUNNAME=runname]
+ [SWEEP sweep_spec]

This statement instructs the simulator to perform a transient analysis. In this mode the simulator computes
the behaviour of the circuit over the specified time interval. The circuit’s currents and voltages are
calculated at discrete time points separated by a variable time step. This time step is adjusted automatically
by the simulator according to circuit activity. The circuit may contain any number of time varying voltage
and current sources (stimuli) to simulate external signals, test generators etc.

tstep This defines the interval for tabulated results specified by the .PRINT
statement. It also defines the output interval for all data if the NORAW
option is specified. If there are no .PRINT statements in the netlist and
NORAW is not being used, this can be set to zero or omitted altogether as
in form 1 above. If set to zero it defaults to (tstop-tstart)/50.

tstep is also used to define default values for pulse and exponential
stimuli.

Note that if tstep and NORAW are specified a time point is forced at tstep
intervals to calculate the output. This differs from other SPICE programs
which generate output at tstep by interpolation.

tstep does not control the time step used by the simulator. This is
controlled automatically according to circuit activity.

264
SIMetrix Simulator Reference Manual

6.36. .TRAN

tstop Stop time. Note that if running in GUI mode, a transient analysis can be
restarted from the front end. See User’s Manual/Analysis Modes/Transient
Analysis/restarting a Transient Run for details.

tstart Start time. This is the time at which the storage of transient analysis
outputs commences. It is not the time at which the analysis begins; this is
always zero. tstart is zero if it is omitted.

tmaxstep Maximum time step. The simulator uses the largest time step possible to
achieve the required accuracy but will not increase it beyond this value. If
not specified it is set to (tstop-tstart)/50.

UIC If specified a DC operating point is not calculated and initial condition
specifications are used instead

fast_start If specified, the simulation will run at reduced accuracy but higher speed
for the time specified by this parameter. The reduced accuracy is
implemented by altering a number of tolerances and internal parameters.
See notes below for more details.

rtnstep If this parameter is specified, Real Time Noise analysis will be enabled.
Note that this feature is not available with all versions of the program.
rtnstep specifies the step size of the noise generators. See Real Time Noise
Analysis.

rtnstart Specifies time at which real time noise generators are switched on.

rtnstop Specifies time at which real time noise generators are switched off.

rtnmode Bias mode option for real time noise. See See RTN Mode

sstart Time at which snapshot saving begins. See below for information on
snapshots.

sstop Time at which snapshot saving stops. See below for information on
snapshots

sstep Interval between snapshot points. See below for information on
snapshots

slist One or more values defining absolute times at which snap shots are saved.
See below for information on snapshots

runname If specified, the value for runname will be passed to the simulation data
group as a string variable with name UserRunName. This may be used to
identify which analysis generated the data which is useful when running
netlists with multiple analyses defined

DCOP, SAVESTATE,
ALL

Snapshot mode.

DCOP: Saves bias point information only.

SAVESTATE: Saves state of circuit for subsequent reload for small signal
analysis

ALL: Both of the above

The default is DCOP.

6.36.1 Fast Start

If the FAST parameter is specified, the simulation will begin with a number of tolerances and internal
parameters altered to speed up the simulation at the expense of accuracy. Just before the end of the fast
start period, these tolerances and parameters will be gradually restored to their normal values. Fast start is
an aid for simulating circuits such as switching power supplies and oscillators for which the initial start up
period is not of interest but takes a long simulation time. Note that although the fast start interval can run

265
SIMetrix Simulator Reference Manual

6.37. Real Time Noise Analysis

sometimes as much as twice as quickly as normal, the fact that accuracy is impaired can mean that the final
steady state reached may not be very accurate. This means that after the fast start period, an additional
settling time may be required for full accuracy to be reached.

Fast start sets the values of POINTTOL and RELTOL according to the value specified by
FASTPOINTTOL and FASTRELTOL respectively.

6.36.2 Snapshots

This feature allows the state of a simulation to be saved at user specified times during a transient analysis.
The states saved can subsequently be reloaded to perform small signal AC analyses.

This allows the small signal response of a circuit to be examined at any point during a transient analysis.
This is especially useful in situations where a circuit is found to be unstable in a transient run but this
instability cannot be reproduced at the operating point usually derived for an AC analysis.

The bias point information at the snapshot time may also optionally be saved. This information is output to
the list file.

To specify snapshot output, specify either the SNAPSHOT or SNAPSTEP keywords with their associated
parameters.

To initialise a small signal analysis with snapshot data, you must specify the SNAPSHOT step mode of a
multi-step analysis. See Multi Step Analyses for details.

6.37 Real Time Noise Analysis

This is an extension of transient analysis rather than a separate analysis mode. When activated, real time
noise sources are added to all noisy devices with a magnitude and frequency distribution calculated using
the same equations used for small signal analysis. This allows noise analysis to be performed on sampled
data systems and oscillators.

To use real time noise analysis, the following parameters may be added to the .TRAN analysis line.

RTNstep Source step size in seconds. This will need to be small enough to cover the
frequency range of interest. The noise magnitude starts rolling off at about
1/3*stepsize. Default=0 i.e. real time noise analysis disabled.

RTNstart Optional. Time after analysis start at which the noise sources will be
enabled. Default = zero

RTNstop Optional. Time after analysis start at which the noise sources will be
disabled. Default = stop time.

The parameters added to the .TRAN line must be named in the same way as .MODEL parameters are
named.

6.37.1 Example

.TRAN 0 1m RTNstep=1u RTNstart=500u

Analysis time 1m, RTN step size 1u, real time sources start at 500u. The step size parameter - i.e. the first
parameter on the .TRAN line - must be supplied if real time noise parameters are to be included. This is
only to comply with the syntax rules not because the step size is needed for any other purpose. In most
cases, just set it to zero as in the above example.

266
SIMetrix Simulator Reference Manual

6.37. Real Time Noise Analysis

6.37.2 Test Results

To test real time noise and verify it’s accuracy we ran a test on a number of circuits which compare AC
noise with real time noise. The procedure was to run real time noise analysis 50 times then plot the
averaged Fourier spectrum. This test was repeated for different transient run times and step sizes to build a
noise spectrum over several decades. The graph below is the result of one such test. This was carried out
on the BSIM3 buffer circuit provided in one of the examples except that a value for AF - the flicker noise
parameter - was added to the models. As can be seen in the graph below the real time noise results strongly
follow the AC noise results.

Similar tests were performed on circuits containing each of the major noise generating devices including
diodes, BJTs, JFETs, resistors (including its flicker noise parameter) and also the NXP MOS9 and
MEXTRAM devices. All showed results similar to below with a close similarity between AC noise and
real time noise.

6.37.3 Real Time Noise Notes

Small-signal Noise

Traditional noise analysis operates as a small-signal mode. This analysis mode is fast and provides detailed
information about noise sources. However, small-signal noise has a number of drawbacks as follows:

• Small signal noise assumes small signal linear operation about a single operating point

• Small signal noise assumes the noise itself does not disturb the operating point significantly

• Small signal noise assumes the noise can be treated as independent of the signal

267
SIMetrix Simulator Reference Manual

6.37. Real Time Noise Analysis

• It is often difficult or impossible to determine if the small-signal assumptions are valid

As a consequence, small-signal noise is not always an appropriate analysis method. It is usually
inappropriate for mixers, switched capacitor circuits and sample-holds amongst others.

Real Time Noise

Real Time Noise is real noise in the time domain. Randomly generated noise signals are applied to noisy
elements in the circuit. No small signal linear assumptions are made and this mode may be used to analyse
noise for any type of circuit.

Real Time Noise is implemented by connecting PWL noise sources in place of noise sources used in small
signal noise analysis and using same equations to set magnitude.

For example, the shot noise in a diode is modelled by a simple current source:

Each white noise source generates a PWL waveform where each point has a random value with a Gaussian
distribution. The following picture shows a typical waveform:

The frequency distribution of the real time noise source can be determined by this equation:

268
SIMetrix Simulator Reference Manual

6.37. Real Time Noise Analysis

where f is frequency and f0 = 1/rtnstep

The following plot shows the distribution for a step size of 100ps

The above describes how white noise sources are implemented. It is also necessary to implement flicker
noise which has a noise distribution that varies with frequency. This is done by summing multiple PWL
sources with increasing step size.

RTN Mode

Noise sources are not fixed like regular signal sources. Their amplitudes vary according to device bias
conditions. But they can be treated like regular signal sources provided their amplitude is determined and
fixed at the start of each real-time noise step. While simple, this method can introduce serious errors in
situations where the operating point changes substantially in a time less than the noise step. This is
illustrated below:

269
SIMetrix Simulator Reference Manual

6.37. Real Time Noise Analysis

When the switch in the above circuit switches off, its conductance falls dramatically, but the noise current
is set according to the on-state. This introduces gross errors as shown above.

This problem can be overcome by ensuring that the noise source is modulated on each time step not just at
each noise step. If we do this, the sources can no longer be considered as fixed as they are now interfering
with the device operating point. This introduces an error in the calculation of the device’s partial derivative
which in turn can impair convergence. However, in practice the error is small and has never been identified
as a problem.

Note that devices implemented from Verilog-A code do not suffer from the problem as the SIMetrix
Verilog-A compiler automatically extracts the exact derivative.

The two alternative methods described above can be selected using the RTNMODE option. RTNMODE=1
is the fixed source option whereas RTNMODE=0 is the modulated source option.

270
SIMetrix Simulator Reference Manual

Chapter 7

Monte Carlo, Sensitivity and Worst-case

7.1 Overview

Monte Carlo analysis is a procedure to assess manufacturing yields by repeating simulation runs with
varying applied random variations to component parameters.

Sensitivity analysis repeats runs while perturbing a single parameter for each step. This allows the
sensitivity to that parameter of any number of measurements to be evaluated. This makes it possible to
identify components and parameters that may require a tight tolerance to maintain a particular
specification, or in some cases identify instabilities in the design.

Worst-case analysis attempts to find the combination of component and parameter variances which will
lead to the worst possible result. It assigns each component or parameter with a value that is either at the
positive extreme or the negative extreme. The decision as to which to use is obtained from the results of a
prior sensitivity analysis using the sign of each sensitivity value.

Both Monte Carlo and worst-case may be used to assess production yield and reliability. For many
applications, Monte Carlo produces the most realistic results but rarely locates the extremes that are
theoretically possible even if statistically unlikely.

It should be noted that worst-case analysis is not guaranteed to locate the worst possible result. The
algorithm assumes that the relationship between component or parameter variation and the measured result
is linear. This is almost never the case in practice.

The implementation of these analysis modes in SIMetrix has been designed to be quick to set up for
simple cases while still providing the required flexibility for more advanced requirements as might be
required for integrated circuit design.

SIMetrix offers a high-degree of flexibility for tolerance specification. It is possible, for example, for
different model parameters to be dependent on a single random variable. This makes it possible to model
the fact that a number of model parameters might be dependent on a single physical characteristic, for
example, the base width of a bipolar transistor. Of course, lot tolerances are also implemented accounting
for the matching of devices in integrated circuits and other multiple components built onto a common
substrate. However, in many products, lot tolerances can only be applied to the same type of device. In
SIMetrix it is possible to model parametric relationships between different types of device which occur in
integrated circuits but which are rarely taken into account.

As well as conventional multiple step Monte Carlo, sensitivity and worst-case analyses, single step sweeps
may also be performed. These are available for the four swept modes, .AC, .DC, .NOISE and .TF. For
example, a Monte Carlo analysis of the DC offset voltage of an amplifier can be performed using a single
run of .DC using a special sweep mode. This is dramatically faster than the alternative of repeated .OP
runs. This type of analysis can also be used to analyse the gain of an amplifier at a single frequency using
.AC or .TF or even the noise, again at a single frequency, using .NOISE.

271
SIMetrix Simulator Reference Manual

7.2. Monte Carlo Analysis

For sensitivity analysis, each point of an AC,DC, Noise or TF analysis would be a single perturbation case.
This swept mode may be used, for example to find the sensitivity of an amplifier at a specified single
frequency in a single run. For large circuits which have thousands of parameters, this can make sensitivity
analysis practical when otherwise it might not be.

Note that the sensitivity analysis described in this chapter is not the same as the .SENS DC sensitivity
analysis. .SENS perturbs every parameter in the circuit and uses an approximate matrix based algorithm to
determine DC sensitivity only.

7.2 Monte Carlo Analysis

7.2.1 Multi-step

Monte Carlo runs are invoked in the same way as multi-step analyses (see General Sweep Specification).
The basic syntax is:

.analysis_name analysis_parameters SWEEP MONTE num_runs NUMCORES=num_cores

Where:

.analysis_name Dot statement for analysis. Either .TRAN, .AC, .DC, .NOISE, .TF

analysis_parameters Specific parameters for that analysis

num_runs Number of runs

num_cores Specify the number of processor cores to use.

Examples

Run 10 Monte Carlo runs for 1mS transient analysis

.TRAN 1m SWEEP MONTE 10

Run 1000 Monte Carlo steps for 1mS transient analysis using 4 processor cores. This will split the 1000
steps into 4 cores with each running 250 steps

.TRAN 1m SWEEP MONTE 1000 NUMCORES=4

100 Runs of a DC Sweep

.DC V1 0 5 0.01 SWEEP MONTE 100

AC sweep of voltage source V5 from -300mV to 300mV. Repeat 50 times

.AC DEVICE=V5 LIN 100 -300m 300m F=100000 SWEEP MONTE 50

7.2.2 Single Step Sweep

Monte Carlo sweep is one of the eight modes available to the swept analysis modes, .AC, .DC .NOISE and
.TF. The other modes are explained in General Sweep Specification. The general syntax is:

.analysis_name MONTE num_points analysis_parameters

Where:

.analysis_name Dot statement for analysis. Either .AC, .DC, .NOISE, .TF

analysis_parameters Specific parameters for that analysis

num_points Number of points in sweep272
SIMetrix Simulator Reference Manual

7.3. Sensitivity and Worst-case Analyses

Examples

1000 point Monte Carlo sweep.

.DC MONTE 1000

AC Monte Carlo sweep 100 steps. Frequency = 10K. This is useful if - say - you are interested in the gain
of an amplifier at one frequency and it needs to lie within a defined tolerance. The analysis defined by the
following line will take very little time even for a large circuit.

.AC MONTE 100 F=10K

7.2.3 Monte Carlo Log File

Monte Carlo analysis generates an XML data file called an MSW file. (Monte Carlo, Sensitivity,
Worst-case). The file contains the values of the parameters actually used in each run along with a seed
value used to seed the random number generator.

The front-end can generate a user-readable HTML file from the MSW file.

The generation of the MSW file can be disabled with the NOMCLOG parameter on the analysis line. Note
that with single-step sweeps, the generation of this file can significantly affect the overall simulation time.

The ‘Seed’ values displayed for each run at the top are the values used to seed the random number
generator. These can be used to set the SEED option in order to repeat a particular random set. See below
for more details.

7.2.4 Seeding the Random Number Generator

The random variations are created using a pseudo random number sequence. The sequence can be seeded
such that it always produces the same sequence of numbers for a given seed. In Monte Carlo analysis, the
random number generator is seeded with a new value at the start of each run and this seed value is
displayed in the log file (see above). It is also possible to fix the first seed that is used using the SEED
option. This makes it possible to repeat a run. To do this, note the seed value of the run of interest then add
the line:

.OPTIONS SEED=seed_value

For example if you wanted to repeat run 2 in the above example you would add this line:

.OPTIONS SEED=1521158126

The first run of each Monte Carlo analysis will use the same random values as run 2 above. Note this
assumes that only changes in values are made to the circuit. Any topology change will upset the sequence.

7.3 Sensitivity and Worst-case Analyses

7.3.1 General Operation

Sensitivity analysis repeats an analysis for each defined tolerance parameter. In each case the chosen
parameter is perturbed by the tolerance range scaled by a fixed scaling parameter called "span". For
example, a circuit which has four resistors with a 2% tolerance defined will run four times with each
resistor perturbed in turn by +2% if span is set to 1.0.

One or more sensitivity measurement functions may be defined and these will be evaluated after the
sensitivity analysis is completed. The results of evaluating these functions, along with the perturbation

273
SIMetrix Simulator Reference Manual

7.3. Sensitivity and Worst-case Analyses

data is stored in an XML format data file, called the MSW file (Monte Carlo, Sensitivity, Worst-case). The
MSW file is used as the input to a subsequent worst-case analysis and may also be used with front end
tools to display sensitivity data such as deviation from nominal and normalised sensitivity values.

Although it usual to specify sensitivity measurement functions using .SENSMEAS statements in the
simulation netlist, it is also possible at the script level to add the results of additional sensitivity
measurements after the simulation has completed. This can be done with the AppendSensitivityData script
function Script Reference Manual/Function Reference/AppendSensitivityData.

Worst-case analysis assumes that by setting each component or parameter at one or other extreme, that is
either +tolerance or -tolerance, the worst possible result will be obtained. This isn’t guaranteed to be the
case, but this method does tend to locate results that are substantially outside the limits predicted by a
Monte-Carlo analysis. To decide whether or not to use the +tolerance or -tolerance value, the results of a
prior sensitivity analysis are used. The sign of the sensitivity to the sensitivity measurement function for
each parameter is all that is needed.

Worst-case analysis also generates an MSW file that is used by the front-end to display a worst-case report.

Both Sensitivity and worst-case analyses may be run in both multi-step and single-step modes. Multi-step
sensitivity and worst-case may be used with Transient, AC, DC, transfer function and noise analyses.
Single-step sensitivity and worst-case may be used with AC, DC, transfer function and noise analyses.

7.3.2 Multi-step

Sensitivity analyses and worst-case analyses are invoked in the same way as other multi-step analyses (see
General Sweep Specification). As worst-case analyses depend on a prior sensitivity analysis, it is usual for
both analysis specifications to be included together. In addition, at least one sensitivity measurement
function will be required if both sensitivity and worst case are run together. See Sensitivity Measurement
Functions.

The basic syntax for sensitivity and worst-case analysis is described below:

Sensitivity Analysis

.analysis_name analysis_parameters SWEEP SENS [SENSID sensid]
[SPAN span] [OUTFILE sens_outfile] [NUMCORES num_cores]

Worst-case Analysis

.analysis_name analysis_parameters SWEEP WC [SENSID sensid]
[INFILE sens_infile] [OUTFILE wc_outfile] [WCID wcid]

274
SIMetrix Simulator Reference Manual

7.3. Sensitivity and Worst-case Analyses

sensid Identifier for sensitivity analysis. In the SENS specification this may be
any arbitrary string. This may then be used in a worst-case analysis (WC
specification) to signify that the worst-case analysis should receive its
sensitivity data from that analysis. The sensid value must also be included
in sensitivity measurement function (.SENSMEAS) definitions. If sensid
is omitted from the sweep specification, a default value will be used as
described in the following table:

.TRAN multi-step TRAN

.AC multi-step AC

.DC multi-step DC

.TF multi-step TF

.NOISE multi-step NOISE

.AC sweep sweep_AC

.DC sweep sweep_DC

.TF sweep sweep_TF

.NOISE sweep sweep_NOISE

span Proportion of the tolerance on a component that is perturbed for sensitivity
measurement. The default value is 1.0 meaning that the component will be
perturbed the whole tolerance from its nominal value

sens_outfile File that will receive the sensitivity data. This is an XML format file that is
used to generate reports and pass data to a subsequent worst-case analysis.
It is not usually necessary to specify this parameter; a default file located
in the temporary data directory will be used if this parameter is
omitted

sens_infile Specifies input data file for a worst-case analysis. This file is usually
generated by a sensitivity analysis. If omitted the file specified by
sens_outfile in the most recent sensitivity analysis sharing the same sensid
will be used.

wcid Identifier for worst-case analysis. This is used to identify sensitivity
measurement functions that should be called to provide data output for this
analysis. If omitted, the parameter defaults to the value of sensid

wc_outfile Data output file for worst-case analysis

Examples

Run a sensitivity analysis on a 200us transient analysis.

.TRAN 200u SWEEP SENS

Run a sensitivity and worst-case analysis on a 200us transient analysis. This would also need a sensitivity
measurement function for the worst-case analysis to run. See Sensitivity Measurement Functions

.TRAN 200u SWEEP SENS

.TRAN 200u SWEEP WC

Run a DC sensitivity analysis followed by a worts-case analysis on DC sweep. Sensitivity uses a 0.1 span
meaning that the sensitivity perturbation will be 10% of the tolerance of each parameter.

.dc v1 -100m 100m 2m SWEEP SENS span=0.1

.dc v1 -100m 100m 2m SWEEP WC

275
SIMetrix Simulator Reference Manual

7.4. Specifying Tolerances

7.3.3 Single Step Sweep

Sensitivity and worst-case single-step sweep analyses run each case as a single point. This is distinct from
a multi-step analysis which runs a complete multi-point analysis for each sensitivity case.

The basic syntax for single-step sensitivity and worst-case analysis sweeps is described below:

Sensitivity Analysis

.analysis_name SENS [SENSID sensid] [SPAN span] [OUTFILE sens_outfile] analysis_parameters

Worst-case Analysis

.analysis_name WC [SENSID sensid] [INFILE sens_infile] analysis_parameters
[OUTFILE wc_outfile] [WCID wcid]

See Multi-step sensitivity for details of the meaning of the above parameters.

Examples

Run a sensitivity on an AC analysis at 1Meg frequency

.AC SENS F=1000000

As above but also run a worst-case analysis. Note this will also need a sensitivity measurement function.

.AC SENS F=1000000

.AC WC F=1000000

7.3.4 Sensitivity Measurement Functions

A Sensitivity measurement function defines a quantity whose sensitivity to circuit parameters is to be
measured. Any number of sensitivity measurement functions may be defined. The results of the function
evaluation is stored in a datafile that sensitivity analyses always generate. This datafile, in XML format, is
used as the input to worst-case analysis and also as input to front end tools that can display the final
sensitivity data.

The syntax for each sensitivity measurement function is as follows:

.SENSMEAS id expression

id identifier corresponding to the sensid parameter defined for sensitivity
analyses or wcid parameter for worst-case analyses. Usually this is set to
one of the defaults defined for each analysis type. These are listed in
Multi-step Sensitivity.

expression Expression to evaluate. For multi-step analyses this must be a function
that returns a scalar measurement from a vector. For example the Mean1()
function returns the mean of a vector. For single step analyses, this would
usually simply be the name of a vector - e.g. VOUT with no function
applied as the measurement for each case is a single element of the vector.
For AC analyses it will be necessary to apply a complex-real conversion
function such as mag(), db(), phase, re() or im()

7.4 Specifying Tolerances

276
SIMetrix Simulator Reference Manual

7.4. Specifying Tolerances

7.4.1 Overview

Monte Carlo, sensitivity and worst-case analyses require tolerances to be specified for one or more
component parameters. Monte Carlo will apply a random value to the parameter that satisfies the tolerance
specification. Sensitivity analysis will perturb the parameter at the positive tolerance value scaled by the
span parameter. Worst-case analysis will perturb each parameter at either the positive tolerance extreme or
the negative tolerance extreme according to the results obtained from a prior sensitivity analysis.

Tolerances for Monte Carlo, sensitivity and worst-case analyses may be specified by one of the following
methods:

1. Using a distribution function in an expression.

2. Using the device parameters TOL, MATCH and LOT

Method 1 above is the most general and flexible. TOL, MATCH and LOT parameters are provided
primarily for backward compatibility but may also be more convenient in some circumstances.

7.4.2 Distribution Functions

To specify the tolerance for a model or device parameter, define the parameter using an expression (see
Using Expressions) containing one of the following functions:

Name Distribution Lot?

GAUSS(tol) Gaussian (3-sigma) No

GAUSSL(tol) Gaussian (3-sigma) Yes

GAUSSSIGMA(tol,sigma) Gaussian No

GAUSSSIGMAL(tol,sigma) Gaussian Yes

UNIF(tol) Uniform No

UNIFL(tol) Uniform Yes

UNIF2(tolupper, tollower) Uniform No

UNIFL2(tolupper, tollower) Uniform Yes

WC(tol) Worst case No

WCL(tol) Worst case Yes

WC2(tolupper, tollower) Worst case No

WCL2(tolupper, tollower) Worst case Yes

GAUSSTRUNC(tol, sigma) Truncated Gaussian No

GAUSSTRUNCL(tol, sigma) Truncated Gaussian Yes

DISTRIBUTION2(args) User defined distribution No

DISTRIBUTION2L(args) User defined distribution Yes

UD2(args) User defined distribution (alias) No

UD2L(args) User defined distribution (alias) Yes

Each of the above functions takes a single argument that specifies the tolerance. The return value is 1.0 +/-
tolerance with the exception of GAUSS and GAUSSL. See Gaussian Distributions for details. In analyses
other than Monte Carlo, sensitivity or worst-case, all of the above return unity.

The graphs below show the characteristics of the various distributions. The curves were plotted by
performing an actual Monte Carlo run with 100000 steps. Note that with sensitivity and worst-case
analyses, only the extreme values defined by the tolerance are used.

277
SIMetrix Simulator Reference Manual

7.4. Specifying Tolerances

GAUSS and GAUSSTRUNC

UNIF

278
SIMetrix Simulator Reference Manual

7.4. Specifying Tolerances

WC

User Defined Distribution

Customised distributions may be defined using the Distribution2 function (or its alias UD2).

Distribution2 may take any number of arguments defined as follows:

Arg Desription

1 Base tolerance. In effect scales the extent of the distribution defined in the
remaining arguments

Remaining
arguments

Lookup table organised in pairs of values. The first value in the pair is the
deviation. This should be in the range +1 to -1 and maps to the output
range. So +1 corresponds to an output value of +tolerance and -1
corresponds to -tolerance. Each deviation value must be greater than or
equal to the previous value. Values outside the range +/- 1 are allowed but
will result in the function being able to return values outside the tolerance
range. The second value in the pair is the relative probability and must 0
or greater

Custom distributions can be conveniently defined using the .FUNC function definition statement. For
example, the following defines a binomial distribution:

.FUNC binomial(a) = {distribution2(a, -1,1, -0.5,1, -0.5,0, 0.5,0, 0.5,1, 1,1)}

The function ‘binomial()’ can subsequently be used in the same way as other distribution functions. This
would have a distribution as shown in the following graph:

279
SIMetrix Simulator Reference Manual

7.4. Specifying Tolerances

Gaussian Distributions

The standard Gaussian distribution functions (GAUSS(), GAUSSL()) return a random variable with a true
Gaussian distribution where the tolerance value represents the 3σ spread. This can return values that are
outside the tolerance specification albeit with low probability. For example GAUSS(0.1) can return values
>1.1 and less than 0.9 as defined by the Gaussian distribution. For specifying actual components this is not
usually exactly correct as most components are tested at production and devices outside the specified
tolerance will be rejected.

This type of component can instead be specified using the GAUSSTRUNC() distibution function. This
rejects values outside the specified range expressed as a multiple of σ. Syntax for the GAUSSTRUNC()
function is:

GAUSSTRUNC(tolerance, sigma_multiplier)

Where:

Arg Desription

tolerance Tolerance. Return value will lie in range 1.0 +/- tolerance

sigma_multiplier Standard deviation of output expressed as multiplier of σ

Use the GAUSSIGMA functions if you need to specify a non-truncated Gaussian distribution with a
spread that is other than 3σ. For Monte Carlo analysis GAUSSSIGMA(tol,sigma) is equivalent to
GAUSS(tol/sigma*3) but GAUSS(tol/sigma*3) will not give the correct range of values for sensitivity and
worst case analyses. In sensitivity and worst case analyses, GAUSSSIGMA(tol,sigma) is equivalent to
GAUSS(tol).

Examples

Apply 50% tolerance to BF parameter of BJT with gaussian distribution.

280
SIMetrix Simulator Reference Manual

7.4. Specifying Tolerances

.MODEL NPN1 NPN IS=1.5e-15 BF={180*GAUSS(0.5)}

A production tested 4.7KΩ 2% resistor with a 3σ distribution:

R1 n1 n2 {4.7K*GAUSSTRUNC(0.1,3)}

Lot Tolerances

The lot versions of the functions specify a distribution to be applied to devices whose tolerances track.
These functions will return the same random value for all devices that reference the same model.

Note that the same effect as LOT tolerances can be achieved using random variables and subcircuits. For
details see Creating Random Variables

Lot Tolerance Examples

Specify 50% uniform lot tolerance and 5% gaussian device tolerance for BF parameter

.MODEL NPN1 NPN IS=1.5E-15 BF={180*GAUSS(0.05)*UNIFL(0.5)}

Here is an abbreviated log file for a run of a circuit using 2 devices referring to the above model:

Run 1 Run 2
Device Nom. Value (Dev.) Value (Dev.)
Q1:bf 180 93.308486 (-48.162%) 241.3287 (34.0715%)
Q2:bf 180 91.173893 (-49.3478%) 245.09026 (36.16126%)

Run 3 Run 4
Device Nom. Value (Dev.) Value (Dev.)
Q1:bf 180 185.95824 (3.310133%) 210.46439 (16.92466%)
Q2:bf 180 190.8509 (6.02828%) 207.04202 (15.02335%)

For the four runs BF varies from 91 to 245 but the two devices never deviate from each other by more than
about 2.7%.

Notes

The tracking behaviour may not be as expected if the model definition resides within a subcircuit. When a
model is defined in a subcircuit, a copy of that model is created for each device that calls the subcircuit.
Here is an example:

XQ100 VCC INN Q100_E 0 NPN1
XQ101 VCC INP Q101_E 0 NPN1

.SUBCKT NPN1 1 2 3 SUB
Q1 1 2 3 SUB N1
Q2 SUB 1 2 SUB P1

.MODEL N1 NPN IS=1.5E-15 BF={180*GAUSS(0.05)*UNIFL(0.5)}

.ENDS

In the above, XQ100 and XQ101 will not track. Two devices referring to N1 inside the subcircuit
definition would track each other but different instances of the subcircuit will not. To make XQ100 and
XQ101 track, the definition of N1 should be placed outside the subcircuit. E.g.

XQ100 VCC INN Q100_E 0 NPN1
XQ101 VCC INP Q101_E 0 NPN1

.SUBCKT NPN1 1 2 3 SUB
Q1 1 2 3 SUB N1

281
SIMetrix Simulator Reference Manual

7.4. Specifying Tolerances

Q2 SUB 1 2 SUB P1

.ENDS

.MODEL N1 NPN IS=1.5E-15 BF={180*GAUSS(0.05)*UNIFL(0.5)}

Creating Random Variables

It is possible to place distribution functions in .PARAM expressions to create a random variable. This
provides a means of describing a relationship between different devices or different parameters within the
same device.

Random variables may be created at the top level in which case they will be global and have the same
value wherever they are used. Random variables may also be created inside subcircuit definitions. In this
case they are local to the subcircuit and will have the same value for all devices and parameters within the
subcircuit but a different value for different instances of the subcircuit.

Example 1 In this example we make a BJT model using a subcircuit. The random variable is created
inside the subcircuit so will have the same value for parameters defined in the subcircuit but will have
different values for multiple instances

.subckt NPN1 c b e

.PARAM rv1 = UNIF(0.5)
Q1 c b e NPN1
.MODEL NPN1 NPN BF={rv1*180} TF={1e-11*rv1}
.ends

For all devices using that model, BF and TF will always have a fixed relationship to each other even
though each parameter can vary by +/-50% from one device to the next.

Here is the log of a run carried out on a circuit with two of the above devices:

Run 1 Run 2
Run 1: Seed=1651893287

Run 1
Device Nom. Value (Dev.)
Q1.Q1:bf 180 148.83033746 (-17.3164792%)
Q1.Q1:tf 10p 8.268352081p (-17.3164792%)
Q2.Q1:bf 180 129.69395145 (-27.9478048%)
Q2.Q1:tf 10p 7.205219525p (-27.9478048%)

Run 2: Seed=763313972

Run 2
Device Nom. Value (Dev.)
Q1.Q1:bf 180 265.86053442 (47.7002969%)
Q1.Q1:tf 10p 14.77002969p (47.7002969%)
Q2.Q1:bf 180 186.41647487 (3.564708261%)
Q2.Q1:tf 10p 10.35647083p (3.564708261%)

Notice that the BF and TF parameters always deviate by exactly the same amount for each device.
However, the two devices do not track each other. If this were needed we would define the random
variable outside the subcircuit at the netlist’s top level:

.PARAM rv1 = UNIF(0.5)

.subckt NPN1 c b e
Q1 c b e NPN1
.MODEL NPN1 NPN BF={rv1*180} TF={1e-11*rv1}
.ends

Here is the log for the above:

282
SIMetrix Simulator Reference Manual

7.4. Specifying Tolerances

Run 1: Seed=1608521901

Run 1
Device Nom. Value (Dev.)
Q1.Q1:bf 180 249.54358268 (38.63532371%)
Q1.Q1:tf 10p 13.86353237p (38.63532371%)
Q2.Q1:bf 180 249.54358268 (38.63532371%)
Q2.Q1:tf 10p 13.86353237p (38.63532371%)

Run 2: Seed=80260241

Run 2
Device Nom. Value (Dev.)
Q1.Q1:bf 180 116.33087232 (-35.3717376%)
Q1.Q1:tf 10p 6.46282624p (-35.3717376%)
Q2.Q1:bf 180 116.33087232 (-35.3717376%)
Q2.Q1:tf 10p 6.46282624p (-35.3717376%)

7.4.3 Hspice Distribution Functions

SIMetrix supports the Hspice method of defining tolerances. This feature needs to be enabled with an
option setting; see Enabling Hspice Distribution Functions. The Hspice method uses random variables
created using a special .PARAM syntax in one of the following form:

.PARAM parameter_name [=] AGAUSS(nominal, abs_variation, sigma, [multiplier]) ...

.PARAM parameter_name [=] AUNIF(nominal, abs_variation, [multiplier]) ...

.PARAM parameter_name [=] GAUSS(nominal, rel_variation, sigma, [multiplier]) ...

.PARAM parameter_name [=] UNIF(nominal, rel_variation, [multiplier]) ...

Where:

parameter_name Name of random variable

nominal Nominal value

abs_variation Absolute variation. AGAUSS and AUNIF vary the nominal value +/- this
value

rel_variation Relative variation. GAUSS and UNIF vary the nominal value by +/-
rel_variation*nominal

sigma Scales abs_variation and rel_variation for functions GAUSS and
AGAUSS. E.g. if sigma is 3 the standard deviation of the result is divided
by 3. So AGAUSS(0,0.01,3) would yield a +/-1% tolerance with a 3 sigma
distribution

multiplier If included this must be set to 1 otherwise an error message will be
displayed and the simulation aborted. Included for compatibility with
existing model files only.

Random variables created using the above method do not behave in the same way as regular parameters
created using the native SIMetrix distribution functions. They actually behave like function calls and
return a different value each time they are used. Random variables created using .param and a native
distribution function are evaluated just once and always return the same value. Internally, the above are
implemented using a .FUNC definition to define a function with no arguments.

For example, the following are both quite legal:

.PARAM rv1 = UNIF(10,1)

.PARAM rv2 = 'UNIF(10,1)'

283
SIMetrix Simulator Reference Manual

7.4. Specifying Tolerances

The first (rv1) will provide a nominal value 10.0 +/- 1.0 with a new value calculated each time it is used.
The second (rv2) is a native SIMetrix distribution function, will produce a value varying from -9.0 to
+11.0 and will always have the same value. With the above definitions for rv1 and rv2, consider the
following regular .PARAM statements:

.PARAM rand1 = rv1

.PARAM rand2 = rv1

.PARAM rand3 = rv2

.PARAM rand4 = rv2

rand1 and rand2 will have different values. rand3 and rand4 will have the same values.

Enabling Hspice Distribution Functions

Hspice distribution functions need to be enabled with an option setting as follows:

.OPTIONS MCHSPICE

This setting also has the same effect:

.OPTIONS HSPICECOMPATIBILITY=1

Important: This option also changes the way Monte Carlo sensitivity and worst-case analyses operate in a
fundamental way by disabling model spawning. This is a process which gives each instance its own
separate copy of its model parameters and allows ‘dev’ (or ‘mismatch’) tolerances to be implemented.
Without model spawning dev tolerances cannot be implemented except by giving every instance their own
copy of a model.

With the Hspice method this can only be done easily by wrapping up .MODEL statements inside a
.SUBCKT definition. Each instance will then effectively get its own .MODEL statement and mismatch
parameters can be defined.

7.4.4 TOL, MATCH and LOT Device Parameters

These parameters may be used as a simple method of applying tolerances to simple devices such as
resistors. The TOL parameter specifies the tolerance of the device’s value. E.g.

R1 1 2 1K TOL=0.05

The above resistor will have a tolerance of 5% with a gaussian distribution by default. This can be changed
to a uniform distribution by setting including the line:

.OPTIONS MC_ABSOLUTE_RECT

in the netlist.

Multiple devices can be made to track by specifying a LOT parameter. Devices with the same LOT name
will track. E.g.

R1 1 2 1K TOL=0.05 LOT=RES1
R2 3 4 1k TOL=0.05 LOT=RES1

R1 and R2 in the above will always have the same value.

Deviation between tracking devices can be implemented using the MATCH parameter. E.g.

R1 1 2 1K TOL=0.05 LOT=RES1 MATCH=0.001
R2 3 4 1k TOL=0.05 LOT=RES1 MATCH=0.001

R1 and R2 will have a tolerance of 5% but will always match each other to 0.1%. MATCH tolerances are
gaussian by default but can be changed to uniform by specifying

284
SIMetrix Simulator Reference Manual

7.4. Specifying Tolerances

.OPTIONS MC_MATCH_RECT

The default distributions for tolerances defined this way are the logarithmic versions as described in
Distribution Functions. To use a linear distribution, add this statement to netlist (or F11 window in the
schematic editor):

.OPTIONS mcUseLinearDistribution

If using device tolerance parameters, note that any absolute tolerance specified must be the same for all
devices within the same lot. Any devices with the same lot name but different absolute tolerance will be
treated as belonging to a different lot. For example if a circuit has four resistors all with lot name RN1 but
two of them have an absolute tolerance of 1% and the other two have an absolute tolerance of 2%, the 1%
devices won’t be matched to the 2% devices. The 1% devices will however be matched to each other as
will the 2% devices. This does not apply to match tolerances. It’s perfectly OK to have devices with
different match tolerances within the same lot.

285
SIMetrix Simulator Reference Manual

8.2. Optimiser Modes

Chapter 8

Optimisation

8.1 Introduction

Optimisation is the process of adjusting a design in order to maximise or minimise some measured
characteristic, for example, power consumption or bandwidth. The SIMetrix simulator includes an
optimisation feature that will perform this process automatically once the characteristic to be optimised
(the ‘objective function’) has been defined along with the parameters that may be varied during the
optimisation process. In addition, any number of constraints may also be defined. A constraint is an
inequality relationship to define some measurement to be above or below a specified value. For example,
the objective function might be to minimise power consumption (the objective) of an amplifier but
retaining a minimum bandwidth and maximum noise factor (the constraints).

The SIMetrix optimiser operates in the simulator process and an optimisation analysis maybe defined
entirely in the netlist. The SIMetrix GUI has additional features to help set up an optimisation analysis and
view the results.

8.2 Optimiser Modes

The SIMetrix simulator can run an optimisation analysis in two different ways.

Single analysis
mode

This is a multi-step mode similar to Monte Carlo and Sensitivity analysis. The
optimisation process can only use one analysis type (e.g. transient) but runs
very efficiently and generates multi-division data

Multiple analysis
mode

This uses the .OPTIMISER statement to define the optimiser analysis but can be
coupled to any number of analysis statements. This makes it possible to
perform a wide variety of measurements on a circuit using for example,
transient AC and noise analyses

8.2.1 Single analysis mode

The syntax for the single-analysis mode is described in the Multi-step Analysis reference.

In addition to the analysis statement, all optimiser analyses must define at least one .OPTSPEC statement.
An .OPTSPEC statement defines the objective function, that is the function that is to be maximised or
minimised and may also define constraints.

See the following section for an example that demonstrates this mode of operation.

286
SIMetrix Simulator Reference Manual

8.2. Optimiser Modes

8.2.2 Single analysis mode - Example

The following example extracts the parameters of a diode model to an I-V curve obtained from a data
sheet. The diode’s data is defined using the .DATA statement.

Here is the complete listing:

V1 V1_P 0 5
D1 V1_P 0 DUT
.model DUT d RS={RS} IS=1e-8 IKF={IKF} N={N}
.TEMP 100

** This is called by .post_process and plots the final result
.file finish

Let data = Diode_data

** Plot reference
plot /ylog /xlog /name Target data

Let res = OptimiserSimulatorResults()
Let bestIndex = res[2]-1
curve /name "Best fit" d1#p[bestIndex]

.endf

.post_process finish

.dc v1 400m 1.4 100m analysis_id=dc_0 sweep opt
+ optparams=[RS,IKF,N]
+ optinitvals=0.01,0.1,1
+ optminvals=1e-06,0.001,0.1
+ alg=NELDER_MEAD
+ abstol=1e-09
+ reltol=0.001
+ show_progress
+ results_file="diode-test_results.sxopt"
.optspec measure="CurveFitLog(Diode_data,d1#p)" type=minimise analysis_id=dc_0
.data Diode_data format=XY
+ 0.2 0.017530716724236
+ 0.254901960784314 0.0357202832826342
+ 0.309803921568627 0.0727830275203565
+ 0.364705882352941 0.14827729430306
+ 0.419607843137255 0.299668595377245
+ 0.474509803921569 0.589675601217673
+ 0.529411764705882 1.10904794310676
+ 0.584313725490196 1.97923148874408
+ 0.63921568627451 3.35105785726025
+ 0.694117647058824 5.38251036969293
+ 0.749019607843137 8.20132439386704
+ 0.803921568627451 11.8538062030208
+ 0.858823529411765 16.2514356239684
+ 0.913725490196078 21.1880160385802
+ 0.968627450980392 26.4796478563484
+ 1.02352941176471 31.9973234288307
+ 1.07843137254902 37.7095034055593
+ 1.13333333333333 43.7173003655197
+ 1.18823529411765 50.1648407603598
+ 1.24313725490196 57.1465442469968
+ 1.29803921568627 64.8085898417056
+ 1.35294117647059 73.3707911567976
+ 1.4078431372549 83.0553217690679
+ 1.46274509803922 94.0181558001952
+ 1.51764705882353 106.428022091678
+ 1.57254901960784 120.475920740442
+ 1.6 128.180625221171

The actual circuit is defined by the first 4 lines. The .file/.endf and .post_process statements define a post
processing script that plots the final result on completion.

287
SIMetrix Simulator Reference Manual

8.2. Optimiser Modes

Analysis and Optimiser Definition

The optimiser analysis is defined by these lines:

.dc v1 400m 1.4 100m analysis_id=dc_0 sweep opt
+ optparams=[RS,IKF,N]
+ optinitvals=0.01,0.1,1
+ optminvals=1e-06,0.001,0.1
+ alg=NELDER_MEAD
+ abstol=1e-09
+ reltol=0.001
+ show_progress
+ results_file="diode-test_results.sxopt"
.optspec measure="CurveFitLog(Diode_data,d1#p)" type=minimise analysis=dc_0

The first line starts:

.dc v1 400m 1.4 100m

and defines a DC sweep which sweep V1 from 0.4V to 1.4V in steps of 0.1V.

analysis_id=dc_0

defines the analysis_id. This is important as it links the analysis statement to a corresponding .OPTSPEC
statement. .OPTSPEC statements make measurements but need to know which analysis data to apply it to.
This is the purpose of the analysis_id parameter. The value used is arbitrary.

sweep opt

defines an optimiser analysis

+ optparams=[RS,IKF,N]
+ optinitvals=0.01,0.1,1
+ optminvals=1e-06,0.001,0.1

define the parameters. The first line defines the parameter names and these work the same way as
parameters defined using .PARAM. optinitvals is compulsory and defines the values the optimiser will use
for the first run. optminvals sepcifies the minimum values that the optimiser will use for those parameters.
This is optional. There is also optmaxvals which defines the maximum values allowed. The optimiser will
not set the parameters to values outside those specs.

+ alg=NELDER_MEAD

defines the optimisation algorithm. See Algorithms for more information.

+ abstol=1e-09
+ reltol=0.001

are stop criteria. abstol specifies an absolute tolerance for the change in objective function. The exact
interpretation of the tolerance parameters depends on the algorithm, but typically when the objective
function improvement between iterations is less than abstol, the optimiser analysis will complete. For
reltol the optimisation analysis completes when the relative value between iterations falls below the
reltol value.

+ show_progress

Instructs the optimiser to write a message for each iteration. The message will be written to the display
device. When running in GUI mode, this is the front end’s command shell. If running from a command
prompt, this is the command prompt window.

+ results_file="diode-test_results.sxopt"

This specifies the results file. The results file is an XML file that contains the entire specification of the
optimisation analysis along with the full results.

288
SIMetrix Simulator Reference Manual

8.2. Optimiser Modes

Objective Function Definition

.optspec measure="CurveFitLog(Diode_data,d1#p)" type=minimise analysis_id=dc_0

This line defines the objective function. Objective functions have the type parameter set to minimise or
maximise and there must be one and one-only objective function for an optimiser analysis. The measure

parameter defines the expression which is evaluated and in this case minimised. CurveFitLog is a function
which compares two vectors and returns a normalised value representing the difference between the two
vectors. 0 means they are identical. 1.0 will be returned if one curve is the exact reciprocal of the other.
CurveFitLog is one of a family of functions, the others are CurveFit, CurveFitLogX and CurveFitLogY.
For full documentation see Script Reference Manual/Function Reference/CurveFit.

analysis_id=dc_0 defines the analysis that the measurement is associated with and must match up with an
analysis_id parameter defined in an analysis statement. In this case it is the .DC analysis defined above.

Diode_data refers the .DATA statement that defines the reference curve we are attempting to match.

8.2.3 Multi-analysis Mode

The multi-analysis optimiser mode is defined using the .OPTIMISER statement. The .OPTIMISER
statement defines the optimiser configuration but also needs at least one additional analysis statements
such as .TRAN or .AC.

In addition to the .OPTIMISER statement and analysis statements, all optimiser analyses must define at
least one .OPTSPEC statement. An .OPTSPEC statement defines the objective function, that is the
function that is to be maximised or minimised and may also define constraints.

8.2.4 Multi-analysis Mode - Example

The following is a direct netlist only version of the amp-700 example shown in the User’s Manual. This is
a bipolar transistor differential amplifier. Its behaviour is governed by four parameters that decide the
values of a number of resistors in the design. Our objective is to minimise its power consumption while
maintaining a minimum bandwidth, gain and signal distortion.

The complete netlist is shown below:

** Differential amplifier

** Circuit definition
V1 V1_P 0 0 AC 1 0 Sin(0 500m 500k 0 0)
V2 0 R11_N 15
R1 R1_P 0 1K
V3 V3_P 0 15
R2 R8_N R11_N 5k
R3 Q2_E R3_N {Rtail}
R4 V3_P R4_N {Rcoll}
R5 V3_P R5_N {Rcoll}
R6 Q3_E R3_N {Rtail}
R7 Q1_E R11_N {Rcurr}
R8 0 R8_N 50k
R9 R9_P V1_P 1K
R10 VOUT 0 10k
R11 Q7_E R11_N 100
R12 V3_P R12_N {Routput}
R13 V3_P R13_N {Routput}
R14 Q4_E R11_N 100
Q1 R3_N R8_N Q1_E 0 N1
Q2 R4_N R1_P Q2_E 0 N1
Q3 R5_N R9_P Q3_E 0 N1
Q4 VOUT Q5_C Q4_E 0 N1
Q5 Q5_C R5_N R12_N 0 P1
Q6 VOUT R4_N R13_N 0 P1

289
SIMetrix Simulator Reference Manual

8.2. Optimiser Modes

Q7 Q5_C Q5_C Q7_E 0 N1

.MODEL N1 NPN IS=3.8E-16 BF=220 BR=0.7
+ ISE=1.8E-16 IKF=1.7E-2 NK=0.75 IKR=3E-2 NE=1.4 VAF=60
+ VAR=7 RC=63.4 RB=300 RE=19.7 XTB=1.17 XTI=5.4
+ TF=1.5E-10 TR=6E-9 XTF=0.3 VTF=6 ITF=5E-5 CJE=0.21E-12
+ MJE=0.33 VJE=0.7 ISC=5E-12 KF=2E-13 AF=1.4
.MODEL P1 PNP IS=1E-15 BF=100 CJE=0.175E-12 XTI=5.4
+ MJE=0.38 VJE=0.6

** OPTIMISER Definition
.optimiser
+ optparams=[rcurr,rtail,rcoll,routput]
+ optinitvals=[1000,1000,10000,10000]
+ optminvals=[50,50,100,100]
+ optmaxvals=[20000,20000,50000,50000]
+ alg=COBYLA
+ abstol=1e-09
+ reltol=0.001
+ iterlim=25
+ results_file="amp-700_results.sxopt"
+ show_progress

** AC Analysis
.ac dec 25 1k 1000000000 analysis_id=ac_0

** Transient analysis
.tran 0 10u 0 10n analysis_id=tran_1

** .OPTSPEC definitions

** Objective function
.optspec
+ measure="-(v3#p+v2#p)"
+ type=minimum
+ analysis_id=ac_0
+ op
+ label="Supply_current"

** Constraint functions
.optspec
+ measure="lpbw(vout, 3)"
+ type=constraint_minimum
+ analysis_id=ac_0
+ value=2.5e+08
+ label="Bandwidth"

.optspec
+ measure="yatx(db(vout),1meg)"
+ type=constraint_minimum
+ analysis_id=ac_0
+ value=20
+ label="Gain_at_1meg"

.optspec
+ measure="MeasureDistortion(vout)"
+ type=constraint_maximum
+ analysis_id=tran_1
+ value=0.01
+ label="Distortion"

Two analyses are defined: an AC frequency sweep and a transient analysis. The AC sweep is used to
measure the gain and frequency response and the transient analysis is used to measure the distortion. The
current consumption is measured using the operating point analysis that is part of the AC analysis mode.

The following paragraphs explain the optimiser definition found in the above netlist.

290
SIMetrix Simulator Reference Manual

8.2. Optimiser Modes

Optimiser Definition

.optimiser
+ optparams=[rcurr,rtail,rcoll,routput]
+ optinitvals=[1000,1000,10000,10000]
+ optminvals=[50,50,100,100]
+ optmaxvals=[20000,20000,50000,50000]
+ alg=COBYLA
+ abstol=1e-09
+ reltol=0.001
+ iterlim=25
+ results_file="amp-700_results.sxopt"
+ show_progress

The first parameter:

+ optparams=[rcurr,rtail,rcoll,routput]

Defines the names of the parameters. These work in the same way as parameters defined using .PARAM.
The next line:

+ optinitvals=[1000,1000,10000,10000]

is compulsory and defines the values the optimiser will use for the first simulator run. The values are in the
same order as the parameter names. The next two lines:

+ optminvals=[50,50,100,100]
+ optmaxvals=[20000,20000,50000,50000]

define minimum and maximum limits for the parameters. The optimiser will not use values outside those
limits.

+ alg=COBYLA

Defines the algorithm to be used. See Algorihms for more information. The lines:

+ abstol=1e-09
+ reltol=0.001
+ iterlim=25

define stop criteria. The optimisation process will complete when one of those criteria is met. abstol
specifies an absolute tolerance for the change in objective function. The exact interpretation of the
tolerance parameters depends on the algorithm, but typically when the objective function improvement
between iterations is less than abstol, the optimiser analysis will complete. For reltol the optimisation
analysis completes when the relative value between iterations falls below the reltol value. iterlim
defines the maximum number of iterations; when the iteration count exceeds this value, the optimiser will
stop.

+ results_file="amp-700_results.sxopt"

This specifies the results file. The results file is an XML file that contains the entire specification of the
optimisation analysis along with the full results.

+ show_progress

Instructs the optimiser to write a message for each iteration. The message will be written to the display
device. When running in GUI mode, this is the front end’s command shell. If running from a command
prompt, this is the command prompt window.

Analysis statements

.ac dec 25 1k 1000000000 analysis_id=ac_0

.tran 0 10u 0 10n analysis_id=tran_1

291
SIMetrix Simulator Reference Manual

8.2. Optimiser Modes

The above are analysis statements. For details see .AC and .TRAN. The important part for optimisation is
the analysis_id parameters. These are compulsory for optimisation analysis but not required otherwise.
The analysis_id parameters link the analysis to an .OPTSPEC statement.

Objective and Constraint Definition

The remaining statements are .OPTSPEC statements and these define the objective and constraint functions.

** Objective function
.optspec
+ measure="-(v3#p+v2#p)"
+ type=minimum
+ analysis_id=ac_0
+ op
+ label="Supply_current"

** Constraint functions
.optspec
+ measure="lpbw(vout, 3)"
+ type=constraint_minimum
+ analysis_id=ac_0
+ value=2.5e+08
+ label="Bandwidth"

.optspec
+ measure="yatx(db(vout),1meg)"
+ type=constraint_minimum
+ analysis_id=ac_0
+ value=20
+ label="Gain_at_1meg"

.optspec
+ measure="MeasureDistortion(vout)"
+ type=constraint_maximum
+ analysis_id=tran_1
+ value=0.01
+ label="Distortion"

The first definition:

.optspec
+ measure="-(v3#p+v2#p)"
+ type=minimum
+ analysis=ac_0
+ op
+ label="Supply_current"

is the objective function. There must be one and one-only objective function. The measure parameter is
the actual expression that is calculated. In this case it is calculating the currents into V3 and V2. The focus
of the optimisation is the power consumption but in this case both voltage sources are the same voltage so
we simply seek to minimise the total current.

The type parameter must be either minimum or maximum for an objective function. In this it is minimum
meaning that the optimiser will seek to minimise this value.

The analysis_id links this measurement to the analysis line with the same analysis_id namely the .AC

statement shown above.

The op parameter specifies that the measurement should use the operating point data for the specified
analysis.

Finally the label parameter defines a label that will be used to identify the measurement in the final
report, in progress messages and in any error messages that may be output.

The remaining three .OPTSPEC statements are constraint functions. The optimiser will attempt to minimise
the objective while complying with the constraints. Constraints are identified by the type parameter

292
SIMetrix Simulator Reference Manual

8.3. Algorithms

having the value constraint_minimum or constraint_maximum. constraint_minimum means that the
optimiser will attempt to not allow the measurement to fall below the value of the value parameter while
constraint_maximum means that the optimiser will attempt to not allow the measurement to rise above the
value of value.

8.3 Algorithms

The optimiser algorithms are provided by the free/open source library NLopt developed and maintained by
Steven G. Johnson who is professor of Applied Mathematics and Physics at MIT.

The library contains over 20 optimiser algorithms, however, we have currently only implemented
"Derivative-free" optimisation algorithms.That is algorithms that do not require the calculation of the
partial derivatives (or sensitivities) of each objective and constraint with respect to every parameter. The
calculation of each derivative requires one additional simulation run for each parameter and so is in
general expensive. However, algorithms that do require derivatives to be calculated, usually converge
much more quickly.

8.3.1 List of Available Algorithms

Here is a complete list of currently available algorithms. Use the value in the Code column as the value of
the alg parameter for the .OPTIMISER statement or single-analysis optimiser statement.

Algorithm Code Details

Nelder-Mead NELDER_MEAD Unconstrained only. Recommended algorithm for
unconstrained problems. Nelder-Mead is also known as
Downhill Simplex and the paper that described this method was
first published in 1966. Many researchers dismiss this algorithm
as it is known to be capable of converging on a non-optimal
point. While this is undoubtedly true, our experience is that it
works well for many circuit simulation problems and is tolerant
of the noise and discontinuities that can be present in that
application

COBYLA COBYLA Supports constraints. Recommended algorithm for constrained
problems. COBYLA (Constrained Optimization BY Linear
Approximations) was developed by the late Michael Powell
who was a professor of Mathematics at Cambridge
university

Nelder-Mead with augmented
Langrangian

NELDER_MEAD_AL Supports constraints. Nelder-Mead coupled with Augmented
Lagrangian, see notes below

BOBYQA BOBYQA Unconstrained only. Bound Optimization BY Quadratic
Approximation. Developed by Michael Powell. This algorithm
attempts to model the objective function as a quadratic which
tends not to work that well in circuit simulation
applications

BOBYQA with augmented
Langrangian

BOBYQA_AL Supports constraints. BOBYQA coupled with Augmented
Lagrangian, see notes below

Subplex SBPLX Unconstrained only. This is a variant of Nelder Mead and
claims to be superior. However this is not what we have found
in circuit simulation applications

293
SIMetrix Simulator Reference Manual

8.3. Algorithms

Algorithm Code Details

Subplex with augmented
Langrangian

SBPLX_AL Supports constraints. SBPLX coupled with Augmented
Lagrangian, see notes below

PRAXIS PRAXIS Unconstrained only. Principal axis method developed by
Richard Brent

PRAXIS with augmented
Langrangian

PRAXIS_AL Supports constraints. PRAXIS coupled with Augmented
Lagrangian, see notes below

Augmented Lagrangian

The augmented Lagrangian algorithm is a derivation of Lagrangian multipliers and is used to convert a
constrained problem into an unconstrained problem. Each of the unconstrained local optimiser methods
have augmented Lagrangian variations that have the suffix _AL. Important: the augmented Lagrangian
method does not normalise the constraints. To get the constraint functions to work with any of these
methods, it is necessary to apply appropriate scaling to each constraint function. This is not the case with
the COBYLA algorithm which supports constraints directly and does not require special scaling.

294
SIMetrix Simulator Reference Manual

Chapter 9

Convergence, Accuracy and Performance

9.1 Overview

In transient and DC analyses, an iterative method is used to analyse the circuit. Generally, iterative
methods start with an initial guess for the solution to a set of equations and then evaluate the equations
with that guess. The result of that evaluation is then used to derive a closer estimate to the final solution.
This process is repeated until a solution is found that is within the error tolerance required. SIMetrix and
SPICE use Newton-Raphson1 iteration which usually converges extremely rapidly. However, there are
occasions when this process is either unreasonably slow or fails altogether. Under these circumstances the
simulation will abort.

SIMetrix offers superior convergence which has been achieved as a result of the following developments to
the simulator core:

• Automatic pseudo transient analysis algorithm for operating point solution. See below for details.

• Advanced iteration algorithm reduces numerical noise

• Enhancements to GMIN and source stepping algorithms to use a variable step size. (The standard
SPICE3 variants use a fixed step).

• Junction GMIN DCOP Convergence Method

• Proprietary enhancements to transient analysis algorithm.

• Optional extended and quad precision solvers

• New matrix solver

• Improvements to device models.

With these improvements, convergence failure with SIMetrix is extremely rare. However, it is impossible
to eliminate this problem altogether and there still remain some circuits which fail.

In this chapter we explain some of the causes of non-convergence and some of the strategies SIMetrix uses
to prevent it. Also explained is what to do in the rare event that convergence fails.

9.2 DC Operating Point

1Sir Isaac Newton 1642-1727 and Joseph Raphson 1648-1715

295
SIMetrix Simulator Reference Manual

9.2. DC Operating Point

9.2.1 Overview

As explained in DC Operating Point Algorithms, SIMetrix has four different algorithms at its disposal to
solve the DC operating point. For this analysis mode to fail, and assuming the default settings are being
used, all four algorithms must fail.

The following sections describe the possible reasons for failure of each mode and what can be done about
them.

The general procedure is as follows:

1. Check your circuit. Check that all components are the correct way around and have the correct
values. Make sure you haven’t used ‘M’ when you meant ‘Meg’.

2. Refer to section Source and GMIN Stepping and see if GMIN or source stepping can be made to
work.

3. Refer to section Pseudo Transient Analysis to get pseudo transient analysis converging.

4. Contact technical support. We don’t officially offer a convergence fixing service and reserve the
right to decline help. However, we are always interested in non-converging circuits and usually we
will look at your circuit to see if we can identify the problem.

9.2.2 Source and GMIN Stepping

By default, if these modes fail, SIMetrix will carry on and attempt pseudo transient analysis. It will not do
so only if instructed not to using the dcopSequence option (See Controlling DC Method Sequence).
Pseudo transient analysis usually succeeds but sometimes can take a long time so you may prefer to get
one of these methods working instead. Also, if pseudo transient analysis fails it is desirable to first see if
GMIN or source stepping can be made to work.

There are a few options you can set to encourage these modes to converge. These are

Name Default Set to What it does

GMINSTEPITERLIMIT 20 100 The number of iterations
attempted for each GMIN
step

GMINMAXITERS 1000 0 (equivalent to infinity) Total number of iterations
allowed for GMIN
stepping

SOURCEMAXITERS 1000 0 (equivalent to infinity) Total number of iterations
allowed for source
stepping

It is only worth changing gminMaxIters or sourceMaxIters if the iteration limit is actually being reached.
Often GMIN and source stepping fail to converge before the iteration limit is reached. To find out, select
the menu Simulator | Show Statistics. This displays, amongst other things, the number of iterations used
for GMIN and/or source stepping. If they exceed 1000 then the iteration limit has been reached. This
means that GMIN/source stepping may have succeeded if it had been given a chance.

9.2.3 Pseudo Transient Analysis

Pseudo transient analysis is the most powerful method that SIMetrix uses and it is rare for it to fail. It is
not however infallible and can go wrong for the following reasons:

296
SIMetrix Simulator Reference Manual

9.2. DC Operating Point

1. The transient analysis itself failed to converge. (This is rare)

2. The circuit oscillates

Convergence failure in pseudo transient analysis

You will get the error message

Cannot find DC operating point
No convergence in pseudo transient analysis

The reasons why this may happen are the same as for transient analysis and are covered in Fixes for
Transient Non-convergence.

Circuit oscillation

You will see the message

Cannot find DC operating point
Iteration limit exceeded in pseudo transient analysis

The circuit can oscillate because:

1. It is designed to i.e. it is or has an oscillator

2. It is supposed to be stable but passes an unstable region during supply ramping

3. It is supposed to be stable but has a fault in its design

4. It is stable but is made unstable by the capacitors added during the pseudo transient analysis

If the circuit is an oscillator

If 1. then you must disable the oscillator during the DC solution. You can do this by one of the following
methods:

1. Apply an initial condition to a point on the circuit that will break the oscillator’s feedback loop.

2. Use the capacitor/inductor PTAVAL parameter to change its value during pseudo transient analysis.
This parameter can be applied to a component or components that form part of the oscillator. In the
netlist the parameter is applied at the end of the component line. E.g for a capacitor:

C12 N2 N6 1.2n PTAVAL=1

In the above a 1.2n capacitor will take the value of 1 farad during pseudo transient analysis.

The circuit is not supposed to be an oscillator

If the circuit does not have any intentionally unstable elements then diagnosis of the problem is a little
harder. Firstly, you need to rule out 4. above as a possible cause. As explained in DC Operating Point
Algorithms, SIMetrix adds its own capacitors to your circuit during pseudo transient analysis in order to
overcome potential problems with regenerative action. The problem is that these added capacitors can
themselves make a circuit unstable. So the first thing to try is to inhibit the addition of these capacitors. To
do this, add the following line to the netlist (See Adding Extra Netlist Lines to find out how to add to a
schematic):

.OPTIONS PTACONFIG=1

then re-run the simulation.

297
SIMetrix Simulator Reference Manual

9.2. DC Operating Point

The circuit is not supposed to be an oscillator but it is

If this fails, then life gets even more complicated! If it fails with the message

Iteration limit exceeded in pseudo transient analysis

then it is very likely that the circuit is oscillating or entering an unstable region. If a different message is
displayed go to The circuit doesn’t oscillate but still doesn’t converge. To allow diagnosis of what is
happening SIMetrix provides a method of analysing the circuit during the pseudo transient ramp. By
default, no data is output during pseudo transient analysis but this can be changed as follows:

1. Set the analysis mode to DC operating point only.

2. Add the simulator option ptaOutputVecs by adding the following line to the netlist:

.OPTIONS PTAOUTPUTVECS

3. Now run the simulation for a while or until it stops.

You can now probe the circuit in the normal way to see what is oscillating. Once the oscillation has been
fixed, you should be able to simulate the circuit successfully.

The circuit doesn’t oscillate but still doesn’t converge

As there are no added capacitors, there is a risk that pseudo transient analysis can fail for the same reason
that GMIN and source stepping sometimes fail. In this case you will get the message:

No convergence in pseudo transient analysis

If this happens your only recourse is the final desperation measure. This is to repeat the simulation with all
valid values of ptaConfig from 2 to 15. (You can skip 7 as this is the default). ptaConfig is a simulator
option that controls some of the parameters used in pseudo transient analysis. Most circuits pass for all
settings but a few are more selective.

Accept Pseudo Transient Unconditionally

You can specify pseudo transient analysis to be accepted unconditionally at some time after it has started.
This is often a good solution to problems caused by circuit oscillation especially if the oscillation is small
and unintended. To accept pseudo transient unconditionally, set the option:

.OPTIONS PTAACCEPTAT=time

Specify a time value that is adequate for the circuit state to settle as much as possible.

9.2.4 Junction Initialised Iteration

By default, this is the first method to be tried. If it fails, SIMetrix will then attempt source stepping, GMIN
stepping and finally pseudo transient analysis. Usually one of these other methods will succeed and it is
not worth spending time getting this method to work.

If it does work, however, this is usually the fastest method and this can be put to good use for repetitive
runs e.g. Monte Carlo. It can be made to succeed using nodesets (see next section) and with a wisely
chosen selection it is possible to speed up repetitive runs. Assuming one of the other methods does
complete to a solution, the best way of creating nodesets is by using the SaveRHS command. This is
explained in the next section.

298
SIMetrix Simulator Reference Manual

9.3. Transient Analysis

9.2.5 Using Nodesets

Nodesets have two uses, one to aid convergence and the other to bias the solution in circuits that have more
than one stable state.

Initially nodesets work exactly the same way as initial conditions. The nodeset voltage is applied via a 1
Ohm (by default) resistor and the solution is completed to convergence (by any of the methods). The
nodeset is then released and the solution repeated. If the nodeset voltage is close to the actual solution the
convergence of the second solution should be rapid.

With SIMetrix, it is rarely necessary to use nodeset’s to find the DC solution of a circuit. They can,
however, be useful for speeding up the operating point analysis for circuit that have already been solved.
You may wish to do this for a Monte-Carlo analysis, for example.

SIMetrix provides a means of creating nodeset’s using the SaveRHS command. To make use of this,
proceed as follows:

1. Run a DC operating point analysis

2. Save the solution to a file using the SaveRhs command as follows:

SaveRhs /nodeset RHS.TXT

This will save to the file RHS.TXT a .nodeset statement specifying the solution at each node.

3. Paste the contents of RHS.TXT to the netlist. Alternatively, include the file using the .INC
statement. (See Adding Extra Netlist Lines to find out how to add to a schematic).

If you now repeat the DC analysis, you should now find that the solution is very rapid. Depending on the
nature of your circuit, you may also find that the solution is found easily even if you modify the circuit.
This is not, however, guaranteed.

9.3 Transient Analysis

9.3.1 What Causes Non-convergence?

There are a number of reasons for convergence failure in transient analysis but most have their root in one
of the following:

1. Numerical noise (also known as round-off error) is preventing the required accuracy from being
reached. SIMetrix has a range of iteration modes that allow the reduction of numerical noise at the
expense of simulation run time. See Numerical Noise and Iteration Modes

2. The circuit contains discontinuities. This is where a model or a circuit construction can switch
abruptly from one state to another with no defined time to do so. This behaviour violates one of the
conditions required for the iteration algorithm to guarantee convergence. It can also defeat the
algorithm used to estimate the accuracy of modelling reactive components. Discontinuities can be
solved either by introducing a smooth behaviour or by defining a finite time to switch states

3. Instability. This is where the circuit has an unbounded instability and thus has no finite solution.
This can be caused, for example, by positive feedback loops or unrealisable networks.

4. Overload. The solution is beyond the numerical range available. A trivial example of this is a PN
junction biased by a large voltage. Without any series resistance, the voltage does not need to be
very high for the current in the device to exceed the range of the machine.

9.3.2 Numerical Noise and Iteration Modes

299
SIMetrix Simulator Reference Manual

9.3. Transient Analysis

Numerical Noise

Numerical noise is one of the major causes of non-convergence in transient analysis. Numerical noise is
the noise induced as a result of uncertainly in a calculation due to the limited precision of the arithmetic
(sometimes referred to as round-off error). Numerical noise is similar in concept to quantization noise that
is prevalent in data converters. Numerical noise increases as the time step reduces due to the behaviour of
reactive components and can reach levels that exceed the tolerance parameters that determine when
convergence has been reached.

SIMetrix uses two strategies to reduce numerical noise and these are controlled by the iteration mode:

1. Use the advanced iteration algorithm. This employ a variation in the iterative equation that lowers
the error terms for most practical circuits. It benefits circuits with high voltages or high-side
sections. The advanced iteration algorithm has only a minor effect on performance.

2. Use a higher calculation precision. Most numerical software including most analog simulators use
double precision which is about 16 decimal digits. SIMetrix has options to use extended precision,
which is about 19 decimal digits, and quad precision which is over 30 decimal digits.

Iteration Modes

SIMetrix offers 8 iteration modes that provide control over the trade-off between numerical noise and
simulation run time. The default mode 1 is the fastest while mode 8 more or less eliminates numerical
noise albeit with a significant performance penalty.

The iteration mode is set by the CONV option setting:

.OPTIONS CONV=<mode>

Where <mode> is an integer from 0 to 8 as described in the table below.

Mode Typical numerical
noise factor
(ratio to mode 0)

Typical simulation
run time factor

Advanced
iteration

Precision

0/1 1 x 1x No Double/Extended

2 ÷100 + 5% Yes Double/Extended

3 ÷1000 + 10%-25% No Extended

4 ÷10000 + 10%-30% Yes Extended

5 ÷1e16 1.5x to 3x No Extended/Quad

6 ÷1e18 1.5x to 3x Yes Extended/Quad

7 ÷1e16 3x to 5x No Quad

8 ÷1e18 3x to 5x Yes Quad

The value in the Typical numerical noise factor column is the typical reduction in numerical noise
compared to mode 0/1. For example, for mode 4 the numerical noise is typically reduced by a factor of
10000 - so the noise will typically be 10000 times lower. Be aware that these are typical values and can
vary widely between different circuits and operating conditions.

The above simulation run time factors are typical when using 4 cores. The penalty for the quad precision
modes is higher with single core operation.

CONV mode 4 is probably the most useful. It is very effective at solving convergence problems with
difficult circuits and affects performance only a little - typically slowing down the simulation by about
25%.

300
SIMetrix Simulator Reference Manual

9.3. Transient Analysis

Advanced Iteration

Modes 2, 4, 6 and 8 enable advanced iteration employ the advanced iteration algorithm. This uses a
variation in the iterative equation that lowers the error terms for most practical circuits. Advanced iteration
is mathematically identical to normal iteration and imposes only a marginal performance penalty.

As well as generally having lower numerical noise, advanced iteration has more dependable error
detection. In rare situations, normal iteration can converge on a solution that is inaccurate due to round-off
error. Usually round-off error causes numerical noise as explained above but in linear circuits (or linear
portions of non-linear circuits) round-off error can be static which means the convergence detection
algorithm incorrectly allows an inaccurate result. This effect does not occur with advanced iteration. This
can mean that on some occasions advanced iteration fails (correctly) when normal iteration succeeds
(incorrectly - resulting in possibly undetected errors).

Convergence Mode GUI

Modes 0, 2, 4, 6 and 8 may be selected through the convergence GUI. See Users Manual / Analysis Modes
/ Convergence / Convergence Options / Iteration Mode

Quad Precision Modes

CONV modes 5 to 8 use Quad precision. Quad precision uses 128-bit values and enjoys a decimal
resolution of over 30 digits. No current windows-compatible microprocessor implements quad precision
arithmetic in hardware and consequently quad precision calculations are software implemented.

All quad precision modes enjoy very low levels of numerical noise and more or less eliminate this as a
source of transient analysis convergence failure. However the performance penalty is greater than other
modes. CONV mode 6 for example, will slow down the simulation typically by about 1.5x to 3x although
it can be slower.

Quad precision is not often needed to make a circuit using normal tolerances run; there is usually another
way to resolve a convergence problem which doesn’t impose a performance penalty. However, if one of
these setting does fix the problem, it is likely to be a reliable fix, and the increased run time may be
satisfactory trade-off.

Quad precision is also useful for diagnosing convergence problems caused by other factors. With the lower
precision modes, numerical noise can often mask the true cause of a convergence problem. With quad
precision the real cause is more easily seen.

Of the four quad precision modes, mode 6 is likely to the best choice. Mode 6 also makes use of extended
precision where possible to improve performance and is consequently faster than mode 8 which uses quad
precision exclusively.

Note that the Simkit devices and BSIM4 versions 4.3 and earlier do not support quad precision. Although
circuits containing these devices will run in quad precision mode, there will only be a small improvement
in convergence.

It should be noted that the calculation precision does not usually affect the simulation accuracy. This is
determined by the tolerance settings especially RELTOL. However, using tighter tolerance parameters
increases the sensitivity of the simulator to the effects of numerical noise and so can, and often does, lead
to convergence failure. So, using a higher precision mode will allow tighter values of the tolerance
parameters to be used.

9.3.3 Fix and Improving Transient Convergence

1. Try a higher iteration mode. At the netlist level add .OPTIONS conv=<value> where <value> is an
integer between 2 and 8. The higher the value the higher the precision but the slower the simulation

301
SIMetrix Simulator Reference Manual

9.4. DC Sweep

run time. Modes 5 to 8 use quad precision and have a significant performance penalty. See Iteration
Modes for more details. If running from the schematic editor, some modes may be selected using
menu Simulator | Convergence Options...

2. Select menu Simulator | Convergence Failure Report.... This will display a report providing
information on the cause of failure. For more details of this report, see User’s Manual/Analysis
Modes/Convergence/Convergence Failure Report

3. As with DC operating point, check your circuit. In particular, check that you are not doing anything
which might cause numerical difficulties such as forward biasing a zero resistance PN junction with
a large zero source impedance voltage source.

4. Do anything that will prevent small time steps being needed. Gross non-linearities, regenerative
loops and high gain loops all require small time-steps if not well damped. It may be that you have
left out damping components to simplify the circuit and speed the simulation.

5. Avoid over-idealising. A common misconception is that simplifying a circuit by removing reactive
components such as capacitors will speed up a simulation and make it easier to converge. Capacitors
have a number of stabilising effects on simulation and are usually beneficial.

6. Avoid using unrealistically large capacitors or inductors and unrealistically small resistors if at all
possible. You should especially avoid such components if non-grounded.

7. If you have some large capacitors in your circuit, try adding a small amount of ESR using the
built-in capacitor ESR parameter rather than a separate resistor.

8. If all else fails you can try relaxing some of the tolerances. If your circuit does not have any small
(sub-µA) currents then set ABSTOL to 1e-9 or 1e-6. You can also increase VNTOL (default 1e-6)
to say 1e-3 if your circuit only has large voltages. Increasing RELTOL is the very last thing you
should try. In our experience, increasing RELTOL beyond its default value (0.001) is rarely a
reliable solution and can make matters worse.

9. If you have current maintenance, contact technical support providing us with your full schematic
and any models you are using. We can fix most convergence problems.

9.4 DC Sweep

DC sweep is basically a repeated DC operating point and so the issues relating to that mode also apply to
DC sweep. However, if you are sweeping a voltage or current source, then an altogether better way of
dealing with DC sweep problems is to simulate the DC sweep using transient analysis with a slow ramp.

Using transient analysis to perform DC sweep also resolves problems that can occur with circuits that have
regions where there is more than one stable state e.g. bistables or schmitt triggers. Consider sweeping the
input voltage of a schmitt trigger circuit. When the input voltage is between the lower and upper
thresholds, the circuit has two stable states and the DC algorithm could find either of them. As each step in
a DC analysis is initialised with the previous step, it will usually find the correct solution but this is not
guaranteed. This means that the output could change state even though the input has not passed either
threshold. This problem doesn’t occur in transient analysis as in this mode the circuit is running as it
would in real life.

9.5 DC Operating Point Algorithms

SIMetrix uses five alternative strategies to resolve the DC operating point. These are:

1. Junction initialised iteration. This is our name for the standard algorithm sometimes simply known
as ‘DC Iteration’.

2. Source stepping.

302
SIMetrix Simulator Reference Manual

9.5. DC Operating Point

3. Diag GMIN stepping.

4. Junction GMIN stepping.

5. Pseudo transient analysis.

These are described in the following sections.

9.5.1 Junction Initialised Iteration

This is the standard algorithm and is sometimes known simply as ‘DC iteration’. Each semiconductor
junction is initialised with a small voltage and iteration then proceeds until convergence (or otherwise).
This method often succeeds and is usually the quickest. However, the starting point is only a bit better than
an educated guess and can be so far removed from the real solution that it never has a chance of
succeeding. (‘Junction initialised iteration’ is a name we have coined and you may see it referred to as JI2
elsewhere in this manual and also in messages output by SIMetrix)

9.5.2 Source Stepping

Source stepping. This method - as with all the remaining methods to be described - belong to a class of
convergence strategies known as continuation methods. These all work by repeating the iterative process
while gradually varying some circuit parameter. The circuit parameter is chosen so that at its start value
the solution is known or trivial and at its final value the solution is the operating point that is required. In
source stepping, all the circuit’s power sources are gradually ramped up from zero to their final value.
While at zero, the circuit’s solution is trivial; all the voltages and currents are zero. At the first step, the
supplies might be ramped up to 10% of their maximum and the solution iterates to convergence. Then the
supplies are increased and the process is repeated. At each step the solution is initialised with the previous
solution which, if the steps are small, will be close to the new solution that is required and convergence
will therefore be relative easy to achieve.

This method is quite effective and is included in all SPICE based simulators including those derived from
SPICE2. However the SPICE versions use a fixed step size, whereas in SIMetrix (since version 2.0), the
step size is variable so if a step fails, the step size is reduced and it tries again.

However, even with an arbitrarily small step size, this method can fail if the circuit contains some kind of
regenerative action. As the supplies are ramped it is possible for the circuit to abruptly switch from one
state to another as in a schmitt trigger. Although circuits such as schmitt triggers do give difficulty, even
circuits that do not have such elements can also give trouble.

9.5.3 Diagonal GMIN Stepping

In this method, a large conductance term is added to every diagonal entry of the solution matrix and
gradually reduced. This is similar to placing a low value resistor from every node of the circuit to ground
but is by no means equivalent. The high conductance term (=low resistance) in the matrix effectively
swamps non-linearities and as a result the solution is easy to find. The term is gradually reduced until it is
zero.

This method is also effective and sometimes works for circuits for which source stepping fails. It is
included with all SPICE3 derived simulators but, as with source stepping, the SPICE variants use a fixed
step while SIMetrix uses a variable step.

GMIN stepping suffers from the same problems as source stepping but not always with the same circuits
so it always worth trying both approaches.

The received wisdom has always been that GMIN stepping is more effective than source stepping. This
has not however been borne out by our own research which has shown the source stepping converges more

303
SIMetrix Simulator Reference Manual

9.5. DC Operating Point

often and more quickly. For this reason, SIMetrix attempts source stepping before GMIN stepping. This is
the reverse of SPICE3 and its derivatives.

9.5.4 Junction GMIN Stepping

The junction GMIN stepping method incrementally steps the conductance across semiconductor junctions.
This in effect sweeps the GMIN option parameter.

This method is effective for CMOS IC designs as long as GMIN is implemented as a conductance between
drain and source. This is not the default configuration for LEVEL 1 to 3 MOSFETs in which GMIN is
implemented as two conductances between the drain and bulk and source and bulk. For other MOSFET
models such as BSIM3, the default GMIN is now between source and drain. For designs containing these
devices, Junction GMIN Stepping is the first method attempted after JI2. For circuits that do not contain
such devices, this method is not attempted at all.

9.5.5 Pseudo Transient Analysis

This method finds the solution using transient analysis. In SIMetrix, a transient analysis is conducted
while ramping up all power sources, in effect simulating the action of switching on the power supplies.
This is not the same as source stepping as the latter is a pure DC method with all reactive components set
to zero. Because reactive components - i.e. capacitors and inductors - are included in transient analysis,
effects such as abrupt changes are damped and occur gradually over a finite time. This eliminates the
problem - described above - that the DC continuation methods suffer from.

The above assumes, however, that the circuit is well modelled with all reactive elements correctly
specified. With integrated circuit design this is usually the case, but for discrete circuits frequently is not.
Opamp macro models, for example, consist of many idealised elements that are not always damped by
reactive elements. Without such damping, pseudo transient analysis can fail for the same reason as source
and GMIN stepping. So, SIMetrix automatically adds additional capacitance to the circuit to prevent this
situation from arising.

The end result is a convergence strategy that nearly always succeeds. However, it is generally the slowest
method so in SIMetrix it is, by default, attempted last.

Although pseudo transient analysis is very powerful it is not completely infallible. Its Achilles Heel is
oscillation. Because a transient analysis is being performed it is possible for the circuit to oscillate. If this
happens, pseudo transient analysis can end up going on forever without ever finding a stable solution. In
our experience, however, this is actually rare. A number of steps are taken to damp oscillators so that even
circuits that are designed to oscillate still succeed with pseudo transient analysis.

SIMetrix provides a number of facilities to inhibit circuit oscillation during pseudo transient analysis.
These are described in Pseudo Transient Analysis.

9.5.6 Controlling DC Method Sequence

You may have a circuit that only succeeds with - say - pseudo transient analysis and so attempting the other
methods just wastes time. In this situation, you can force the simulator to attempt this method exclusively.
To do this you need to set the two simulator options noOpiter and dcopSequence. noOpiter inhibits the
first method (junction initialised iteration) while dcopSequence controls which and what order the
remaining methods are attempted. The value of dcopSequence consists of any combination of SOURCE,
GMIN, JUNCGMIN and PTA separated by the pipe symbol: ‘|’. SOURCE, GMIN, JUNCGMIN and PTA
refer respectively to ‘source stepping’, ‘DIAG GMIN stepping’, ‘Junction GMIN stepping’ and ‘pseudo
transient analysis’. The order in which these words appear in the value of dcopSequence, determines the
order in which the corresponding methods will be attempted. So for example:

.OPTIONS NOOPITER DCOPSEQUENCE=GMIN|PTA

304
SIMetrix Simulator Reference Manual

9.6. Singular Matrix Errors

will force GMIN stepping to be attempted first followed by pseudo-transient analysis. Junction initialised
iteration, junction GMIN stepping and source stepping won’t be attempted at all. Note that PTA must
always be the last entry.

9.6 Singular Matrix Errors

A singular matrix error occurs when the circuit does not have a unique and finite solution. For example, a
circuit containing a floating capacitor does not have a unique DC solution as the capacitor can be at any
voltage. Also circuits with shorted inductors, voltage sources or a combination of both will fail with this
error.

If you get this error, select menu Simulator | Convergence Failure Report. This will show any nodes
with no DC path to ground - a common cause of singular matrix errors. If this doesn’t show the cause,
check your circuit generally.

If you think you circuit is OK then it is possible that the error is occurring because during the course of
iterating to a solution, some node voltages or device currents reached very high values and the limited
accuracy of the machine made it seem that the matrix was singular. This can happen with junction
initialised iteration. If this is the case, try setting the option:

.OPTIONS NOOPITER

This will inhibit this mode and the simulator will start with source stepping. This method, and the others
that follow, don’t generally suffer from this problem.

Note that the simulation will abort if a singular matrix is detected in junction initialised iteration. It will
not automatically attempt the other methods. This is because, by far the most common reason for singular
matrices is circuit error.

9.7 Transient Analysis - ‘Time step too small’ Error

The message:

Timestep too small

is not actually due to non-convergence. It means that, because of the nature of your circuit, to achieve the
required accuracy, a time step smaller than the minimum permissible was needed. The default value for the
minimum time step is 1e-18 or 1e-9*max-time-step whichever is the smaller. This error can be fixed by
setting a lower value for the minimum time step and can be set in the user interface. See User’s
Manual/Analysis Modes/Transient Analysis/Setting up a Transient Analysis/Time Step.

9.8 Accuracy and Integration Methods

9.8.1 A Simple Approach

If you wish to increase the accuracy of a simulation, reduce the value of RELTOL. This defaults to 0.001
so to reduce it to say 1e-5 add the following line to the netlist:

.OPTIONS RELTOL=1e-5

(The setting of RELTOL is supported by the front end. See User’s Manual/Analysis Modes/Simulator
Options/Setting Simulator Options/Tolerances for details.)

The simulation will run slower. It might be a lot slower it might be only slightly slower. In very
unfortunate circumstances it might not simulate at all and fail with a convergence error.

305
SIMetrix Simulator Reference Manual

9.8. Accuracy, Integration

Conversely, you can speed up the simulation by increasing RELTOL but you should not set this to a value
higher than around 0.005 as this will degrade accuracy to an unacceptable level.

9.8.2 Iteration Accuracy

For DC and transient modes, the simulator essentially makes an approximation to the true answer. For DC
analysis an iterative method is used to solve the non-linear equations which can only find the exact answer
if the circuit is linear. The accuracy of the result for non-linear circuits is determined by the number of
iterations; accuracy is improved by performing more iterations but obviously this takes longer. In order to
control the number of iterations that are performed an estimate is made of the error by comparing two
successive iterations. When this error falls below a predetermined tolerance, the iteration is deemed to
have converged and the simulator moves on the next step or completes the run. Most SPICE simulators use
something similar to the following equations to calculate the tolerance:

For voltages: TOL = RELTOL * instantaneous_value + VNTOL

For currents: TOL = RELTOL * instantaneous_value + ABSTOL

"instantaneous_value" is the larger of the current and previous iterations. VNTOL has a default value of
1µV so for voltages above 1mV, RELTOL dominates. ABSTOL has a default of 1pA so for currents above
1nA, RELTOL dominates.

The above method of calculating tolerance works fine for many circuits using the default values of VNTOL
and ABSTOL. However, SPICE was originally designed for integrated circuit design where voltages and
currents are always small, so the default values of ABSTOL and VNTOL may not be appropriate for - say
- a 100V 20A power supply. Suppose, that such a PSU has a current that rises to 20A at some point in the
simulation, but falls away to zero. When at 20A it has a tolerance of 20mA but when it falls to zero the
tolerance drops to ABSTOL which is 1pA. In most situations the 1pA tolerance would be absurdly tight
and would slow down the simulation. Most other SPICE products recommend increasing ABSTOL and
VNTOL for PSU circuits and indeed this is perfectly sound advice. However, In SIMetrix the tolerance
equation has been modified to make this unnecessary in most cases. Here is the modified equation:

For voltages: TOL = RELTOL * MAX(peak_value * POINTTOL, instantaneous_value) + VNTOL

For currents: TOL = RELTOL * MAX(peak_value * POINTTOL, instantaneous_value) + ABSTOL

peak_value is the magnitude of the largest voltage or current encountered so far for the signal under test.
POINTTOL is a new tolerance parameter and has a default value of 0.001. So for the example we gave
above, peak_value would be 20 and when instantaneous_value falls to zero the tolerance would be:

0.001 * MAX(20 * 0.001, 0) + 1p = approx. 20µA

20µA is a much more reasonable tolerance for a signal that reaches 20A.

The above method has the advantage that it loosens the tolerance only for signals that actually reach large
values. Parts of a circuit that only see small voltages or currents - such as the error amplifier of a
servo-controlled power supply - would still be simulated with appropriate precision.

POINTTOL can be increased to improve simulation speed. It is a more controlled method than increasing
RELTOL. POINTTOL can be raised to 0.1 or even 1.0 but definitely no higher than 1.0.

9.8.3 Time Step Control

The tolerance options mentioned above also affect the time step control algorithm used in transient
analysis. In SIMetrix, there are three mechanisms that control the time step, one of which has to be
explicitly enabled. These are:

1. Iteration time step control

2. LTE time step control

306
SIMetrix Simulator Reference Manual

9.8. Accuracy, Integration

3. Voltage delta limit

Item 3 above is inactive unless explicitly enabled using the MAXVDELTAREL option setting. See below
for details.

Iteration Time Step Control

Iteration control reduces the time step by a factor of 8 if convergence to the specified accuracy cannot be
achieved after 10 iterations. (10 by default but can be changed with ITL4 option). If convergence is
successful, the time step is doubled. As this mechanism is controlled by the success or otherwise of the
iteration it is also affected by the same tolerance options described in the above section about iteration
accuracy.

LTE Time Step Control

"LTE time step control" is an algorithm which controls the accuracy of the numerical integration method
used to model reactive devices such as inductors and capacitors. These devices are governed by a
differential equation. It is not possible in a non-linear circuit to solve these differential equations exactly so
a numerical method is used and this - like the iterative methods used for non-linear devices - is
approximate. In the case of numerical integration, the accuracy is determined by the time step. The
smaller the time step the greater the accuracy but also the longer the simulation time.

The accuracy to which capacitors are simulated is controlled by RELTOL, POINTTOL and two other
options namely TRTOL and CHGTOL. The latter is a charge tolerance and has a similar effect to VNTOL
and ABSTOL but instead represents the charge in the capacitor. It’s default value is 1e-14 which, like
ABSTOL and VNTOL is appropriate for integrated circuits but may be too low for PSU circuits with large
capacitors. However, the peak detection mechanism controlled by POINTTOL described in the above
section also works for the LTE time step control algorithm and it is therefore rarely necessary to alter
CHGTOL.

TRTOL is a dimensionless value which defaults to 7. It affects the overall accuracy of the numerical
integration without affecting the precision of the iteration. So reducing TRTOL will increase the accuracy
with which capacitors and inductors are simulated without affecting the accuracy of the iterative method
used to simulate non-linear elements. However, in order for the simulation of reactive devices to be
accurate, the non-linear iteration must also be accurate. So, reducing TRTOL much below unity will result
in a longer simulation time but no improvement in precision. Increasing TRTOL to a large value, however,
may be appropriate in some circumstances where the accuracy to which reactive devices are simulated is
not that important. This may be the case in a circuit where there is an interest in the steady state but not in
how it was reached.

Inductors are controlled by the same tolerances except CHGTOL is replaced by FLUXTOL. This defaults
to 1e-11.

The default LTE time step algorithm used in SIMetrix is slightly different to that used by standard SPICE.
The standard SPICE variant is also affected by ABSTOL and VNTOL. The SIMetrix algorithm controls
the time step more accurately and as a result offers better speed-accuracy performance.

Voltage Delta Limit

This places a limit on the amount of change allowed in a single timestep for each node. This limit is
governed by the option setting MAXVDELTAREL and MAXVDELTAABS and is included to overcome a
problem that can cause false clocking of flip-flops. The limit can be calculated from:

MAXVDELTAABS + MAXVDELTAREL*(node_voltage)

307
SIMetrix Simulator Reference Manual

9.8. Accuracy, Integration

where node_voltage is the larger of the node voltage at current time step and the node voltage at the
previous time step. The above is calculated for all voltage nodes. If the change in voltage exceeds this
limit, the time step is cut back.

The above mechanism is not enabled if MAXVDELTAREL is zero or less and MAXVDELTAREL is zero
by default.

Setting MAXVDELTAREL to a value of about 0.4 will usually fix problems of false clocking in flip-flops.
However, this will slow down the simulation slightly and it is not recommended that this setting is used in
circuits that do not contain flip-flops.

9.8.4 Accuracy of AC analyses

The small-signal analysis modes .AC, .TF and .NOISE do not use approximate methods and their accuracy
is limited only by the precision of the processor’s floating point unit. Of course the DC operating point that
always precedes these analysis modes is subject to the limitations described above. Also, the device
models used for non-linear devices are also in themselves approximations. So these modes should not be
seen as exact but they are not affected by any of the tolerance option settings.

9.8.5 Summary of Tolerance Options

RELTOL

Default = 0.001. This affects all DC and transient simulation modes and specifies the relative accuracy.
Reduce this value to improve precision at the expense of simulation speed. We do not recommend
increasing this value except perhaps to run a quick test. In any case, you should never use a value larger
than 0.01.

POINTTOL

Proprietary to SIMetrix. Default = 0.001. Can increase to a maximum of 1.0 to improve speed with loss of
precision. Reduce to 0 for maximum accuracy but note this may just slow down the simulation without
really improving precision where it is needed.

ABSTOL

Default = 1pA. This is an absolute tolerance for currents and therefore has units of Amps. This basically
affects the tolerance for very low values of current. Sometimes worth increasing to resolve convergence
problems or improve speed for power circuits.

VNTOL

Default = 1V. Same as ABSTOL but for voltages.

TRTOL

Default = 7. This is a relative value and affects how accurately charge storage elements are simulated.
Reduce it to increase accuracy of reactive elements but there is no benefit reducing below about 1.0. In
circuits where there is more interest in the steady state rather than how to get there, simulation speed can
be improved by increasing this value.

308
SIMetrix Simulator Reference Manual

9.8. Accuracy, Integration

CHGTOL

Default = 1e-14. Minimum tolerance of capacitor charge. Some convergence and speed improvement may
be gained by increasing this for circuits with large capacitors. Generally recommended to leave it alone.

FLUXTOL

Default = 1e-11. Same as CHGTOL except applied to inductors.

9.8.6 Integration Methods - METHOD option

SIMetrix, along with most other SPICE products use three different numerical integration methods to
model reactive elements such as capacitors and inductors. These are Backward Euler, Trapezoidal Rule
and Gear. Backward Euler is used unconditionally at various times during the course of a simulation but at
all other times the method used is controlled by the METHOD option (as long as ORDER is set to 2 or
higher - see below).

The METHOD option can be set to TRAP (trapezoidal - the default) or GEAR. Gear integration can solve
a common problem whereby the solution seems to oscillate slightly. An example is shown below.

309
SIMetrix Simulator Reference Manual

9.8. Accuracy, Integration

The plots show the reverse recovery of a diode. The green curve was simulated with the default trapezoidal
integration method whereas the red used Gear integration. Note that gear integration introduces a slight
overshoot. This is a common characteristic. To find out whether such overshoots are a consequence of the
integration or are in fact a real circuit characteristic, you should simulate the circuit with much smaller
values of RELTOL (see above). It is also suggested that you switch back to trapezoid integration when
using tight tolerances; the oscillation caused by trapezoidal integration disappear if the time step falls
below half the time constant of the circuit.

Note, you should not use Gear integration if you are simulating strongly resonant circuits such as
oscillators. Gear integration introduces a numerical damping effect which will cause resonant circuits to
decay more rapidly than they should. For example:

The above curves are the result of simulating a simple LC circuit that is completely undamped. The top
trace was the result of Gear integration and the bottom, trapezoidal. The bottom curve is correct and agrees
with theory. The top curve is inaccurate. If the analysis was done with Gear integration but with a smaller
value of RELTOL, the damping effect would be less, so for all methods the result is ultimately accurate if
the tolerance is made small enough. But trapezoidal gives accurate results without tight values of
RELTOL.

310
SIMetrix Simulator Reference Manual

9.9. Multi-Core Systems

ORDER option

This defaults to 2 and in general we recommend that it stays that way. Setting it to 1 will force Backward
Euler to be used throughout which will degrade precision without any speed improvement. It can be
increased up to a value of 6 if METHOD=GEAR but we have not found any circuits where this offers any
improvement in either speed or precision.

9.9 Using Multiple Core Systems

9.9.1 Single Step Runs

SIMetrix will make use of multiple core processors to speed up simulations. It does this by dividing the
work for calculating device equations amongst multiple threads each running on its own core. For
example, a circuit with 100 transistors will need the equations governing the transistors to be calculated for
each iteration. With a 4 core system, each core can be assigned the equations for 25 transistors to be
calculated in parallel which will allow the iteration to complete in less time.

However, only the device equation calculation is subject to multiple core execution. There are many other
tasks that are performed during a simulation run that remain single-threaded, that is executed in sequence
on a single core. For this reason multiple cores will not give a speed up proportional to the number of
cores.

9.9.2 Using Multiple Cores for Single Step Runs

SIMetrix will automatically choose how many cores to use for the simulation. For simple circuits it will
use a single core and beyond a certain level of complexity it will use all the cores available on a single
chip. So if you have a 4-core machine where all 4 cores are implemented on a single processor chip,
SIMetrix will use all 4 cores as long as the circuit complexity is sufficient to justify it.

If you have a machine with, for example, 8 cores implemented using 2 4-core processor ICs, SIMetrix will
use just one of the ICs so therefore 4 cores.

You can override the number of cores using the mpnumthreads .OPTIONS setting. E.g.:

.OPTIONS MPNUMTHREADS=2

will force 2 cores to be used as long as the computer system does actually have 2 cores. SIMetrix will not
use more threads than there are physical cores available.

Be aware that hyperthreaded logical processors are not counted as a physical processor. So if you have 4
physical cores and 8 logical cores implemented using hyperthreading, SIMetrix will use a maximum of 4
cores.

9.9.3 Multi-core Multi-step Simulation

Multiple core execution does give a very substantial speed improvement when applied to multi-step
analyses. This is covered in User’s Manual/Analysis Modes/Multi-step Analyses/Using Multiple Cores for
Multi-step Analyses.

9.10 Matrix Solver

To simulate a circuit, SIMetrix formulates a set of linear equations from the non-linear equations that
govern the devices in the circuit. This is part of an iterative algorithm that is repeated successively to

311
SIMetrix Simulator Reference Manual

9.10. Matrix Solver

converge on the solution to the non-linear system. The linear system of equations is solved using a matrix
solver.

SIMetrix has two matrix solvers and you can choose between them. The two solvers are:

1. Sparse 1.3 developed by Kenneth Kundert and which is the solver supplied with SPICE 3

2. KLU developed by a research group at the University of Florida under Prof. Tim Davis. This was
developed for circuit simulation and was moulded to perform well for the type of matrix that circuit
simulators tend to generate. The solver makes use of more modern techniques than the original
SPICE3 solver which was developed in the 1980s.

SIMetrix uses KLU by default and for most applications this is the better choice. For circuits with more
than about 500 nodes it is almost always faster for the following reasons:

1. It has uses superior ordering algorithms. The matrix that arises from circuit simulation problems is
sparse which means that nearly all terms are zero. Exploiting sparsity to greatest effect depends on
the row and column ordering. KLU makes use of modern research to produce superior ordering to
Sparse 1.3

2. The factorisation algorithm is superior

3. It can be reordered efficiently and rapidly. The optimum matrix ordering that is ideal for DC and
long time steps is often different to that needed for small time steps. Sparse 1.3 can not be reordered
very efficiently and tends to use the same ordering throughout the simulation. KLU can be reordered
much more frequently providing optimal ordering at all times

Although KLU is usually the best choice, Sparse 1.3 can give better results for small circuits. To change
the matrix solver use this option:

.options spsolver=solver

Where solver is:

KSPARSE for Sparse 1.3

or

KLU for KLU

Currently .SENS analyses always use Sparse 1.3 regardless of the spsolver setting.

312
SIMetrix Simulator Reference Manual

10.2. Logic States

Chapter 10

Digital Simulation

10.1 Overview

As well as an analog simulator, SIMetrix incorporates an event driven digital simulator tightly coupled to
the analog portion. This system can rapidly and accurately simulate mixed signal circuits containing both
analog and digital components. Of course, an analog only simulator can simulate a mixed signal circuit
using digital models constructed from analog components, but this approach is slow. The advantage of this
mixed-mode approach is that it is dramatically faster, typically in the order of 100 times for pure digital
circuits.

The SIMetrix mixed mode simulator is based on the XSPICE system developed by the Georgia Technical
Research Institute. Although based on XSPICE, SIMetrix features many enhancements over the original
system. See Enhancements over XSPICE for details of these improvements.

If you only use digital models supplied in the device library, then you don’t need to know much about the
digital simulator in order to use it. Just select the devices you need from the parts browser and simulate in
the normal way. This chapter describes some of the inner workings of the simulator including how it
interfaces to the analog system. More importantly, perhaps, this chapter also describes how you can design
your own digital models.

10.2 Logic States

The digital simulator is described as ‘12-state’ which means that a digital signal can be in 1 of 12 states.
These 12 states are combined from 3 levels and 4 strengths as follows:

Logic levels Strengths

HIGH STRONG

LOW RESISTIVE

UNKNOWN HI-IMPEDANCE

UNDETERMINED

Logic levels HIGH and LOW are self-explanatory. UNKNOWN means the signal could be either HIGH or
LOW but which is not known at this stage. The start up state of a flip-flop is an example of an
UNKNOWN state. Strength refers to the driving force behind the signal. STRONG is the highest with
HI-IMPEDANCE the lowest. It is used to resolve conflicts when two outputs are connected together. For
example consider a LOW-RESISTIVE signal (as possessed by a pull-down resistor) connected to a

313
SIMetrix Simulator Reference Manual

10.3. Analog to Digital Interfaces

HIGH-STRONG signal There is a conflict between the two logic levels but as they are different strengths,
the stronger wins and therefore the resulting level is HIGH.

UNDETERMINED strength means that the strength of the signal is unknown.

10.2.1 State resolution table

The following table defines how a state is decided when two outputs are connected:

0S 1S XS 0R 1R XR 0Z 1Z XZ 0U 1U XU

0S 0S XS XS 0S 0S 0S 0S 0S 0S 0S XS XS

1S XS 1S XS 1S 1S 1S 1S 1S 1S XS 1S XS

XS XS XS XS XS XS XS XS XS XS XS XS XS

0R 0S 1S XS 0R XR XR 0R 0R 0R 0U XU XU

1R 0S 1S XS XR 1R XR 1R 1R 1R XU 1U XU

XR 0S 1S XS XR XR XR XR XR XR 1U XU XU

0Z 0S 1S XS 0R 1R XR 0Z XZ XZ 0U XU XU

1Z 0S 1S XS 0R 1R XR XZ 1Z XZ XU 1U XU

XZ 0S 1S XS 0R 1R XR XZ XZ XZ XU XU XU

0U 0S XS XS 0U XU XU 0U XU XU 0U XU XU

1U XS 1S XS XU 1U XU XU 1U XU XU 1U XU

XU XS XS XS XU XU XU XU XU XU XU XU XU

0S = LOW-STRONG

1S = HIGH-STRONG

XS = UNKNOWN-STRONG

0R = LOW-RESISTIVE

1R = HIGH-RESISTIVE

XR = UNKNOWN-RESISTIVE

0Z = LOW-HI-Z

1Z = HIGH-HI-Z

XZ = UNKNOWN-HI-Z

0U = LOW-UNDETERMINED

1U = HIGH-UNDETERMINED

XU=UNKNOWN-UNDETERMINED

10.3 Analog to Digital Interfaces

At the simulator level, there are two types of node namely analog and digital and they cannot be connected
together. At the netlist level it is possible to connect analog components to digital outputs and inputs.
When SIMetrix sees an analog component connected to a digital signal, it automatically interconnects
them using an interface bridge. It will use an analog-digital bridge to connect an analog signal to a digital
input and a digital-analog bridge to connect to a digital output. If you connect an analog component to a

314
SIMetrix Simulator Reference Manual

10.3. Analog to Digital Interfaces

signal which connects to both digital inputs and outputs both types of bridge will be used and the digital
inputs and outputs will be separated from each other as illustrated in the following diagrams.

Circuit entered in schematic editor

Circuit that is actually simulated

One problem with the above approach is that the A-D and D-A bridges introduce an additional delay to the
signal path which would therefore alter the performance of the digital system even if the analog node does
not present any significant load. This is overcome by assigning a negative load to the input of the digital

315
SIMetrix Simulator Reference Manual

10.4. Logic Families

bridge which in effect reduces the delay of the driving gate. In the above example U2 has a negative input
load which reduces the delay of U3.

10.3.1 How A-D Bridges are Selected

When SIMetrix implicitly places an AD bridge in a circuit, it must choose an appropriate model for the
bridge. All AD bridges are based on DAC_BRDIGE and ADC_BRIDGE models described in
Analog-Digital Interface Bridge, and Digital-Analog Interface Bridge. The model is chosen according to
the FAMILY parameter assigned to the digital device to which the bridge is connected. The FAMILY
parameter along with the associated OUT_FAMILY and IN_FAMILY parameters are explained more fully
in Logic families. Basically the FAMILY parameter specifies the logic family to which the device belongs
e.g. ‘HC’ for high speed CMOS.

The name of the model used to interconnect digital to analog is always of the form:

family_name_dac

and to interconnect analog to digital

family_name_adc

For example if the family name is HC the D-A bridge is called HC_DAC. There is a selection of A-D and
D-A bridges in the model library supplied with SIMetrix. (In BRIDGES.LB).

10.4 Logic Families

The digital simulator only knows about the 12 logic states described in Logic States. It doesn’t know
anything about threshold voltages or output impedances and consequently cannot directly handle the
effects of interconnecting devices from different logic families. It does however feature a mechanism of
determining the level of compatibility between families and will raise an error if incompatible devices are
interconnected. For example, ECL and high speed CMOS operate at completely different thresholds and
cannot be connected except via a special interface gate. SIMetrix knows this so that if you attempt to
connect such devices, an error message will be displayed and the simulation will not run. Conversely, it is
perfectly OK to drive an LSTTL input from an HC output and SIMetrix will operate normally if you do so.
If you drive an HC input from an LSTTL output SIMetrix will issue a warning as, although this may work
in practice, it cannot be guaranteed to do so under all circumstances.

Another problem arises when connecting inputs from different logic families together. SIMetrix deals with
this by treating groups of inputs as if they were all from the same logic family provided they are
compatible. This selected logic family is then used to resolve any output-input conflict as described above.
It is also used to select an analog-digital interface bridge as described in Analog to Digital Interfaces.

Groups of outputs from different families are dealt with in the same way as inputs described above.

SIMetrix knows how to resolve these situations by referring to a set of three tables called the ‘Logic
Compatibility Tables’. A standard set of tables is built in to the simulator but they can also be redefined.
See Logic Compatibility Tables.

10.4.1 Logic Family Model Parameters.

There are three model parameters used to specify the logic family to which a device belongs. These are:

Parameter name Description

IN_FAMILY Family for inputs

316
SIMetrix Simulator Reference Manual

10.4. Logic Families

Parameter name Description

OUT_FAMILY Family for outputs

FAMILY Family for both inputs and outputs if IN_FAMILY/OUT_FAMILY not
specified

The parameters are text strings. Any name may be used that is defined in the logic compatibility tables but
you must not use the underscore character in a family name. The families supported by the internal tables
are listed in Supported Logic Families.

The underscore character is used to define a sub-family that has the same characteristics as the main family
as far as logic compatibility is concerned but which will call a different interface bridge when connected to
an analog node. This is used to define schmitt trigger devices such as the 74HC14. In an all-digital circuit
this behaves exactly like a normal inverter with a slightly longer delay. When the input is connected to an
analog system an interface bridge with the appropriate hysteresis is called up instead of the normal
interface.

10.4.2 Logic Compatibility Tables

As explained in the above section, there are three of these. Each table has a row and column entry for each
of the logic families supported. These are:

• Resolve In-Out table. Decides what to do when an output is connected to an input from a different
family. Possible responses are OK, ERR (error - not permissible) and WARN (OK but give warning
to user)

• Resolve In-In table. Decides how to treat the situation when two inputs from dissimilar families are
connected. As described above SIMetrix must treat a group of inputs connected together as all
belonging to the same logic family for the purpose of deciding an analog interface bridge (see
Analog to Digital Interfaces) and to resolve in-out family conflicts. Possible responses are ROW,
COLUMN and ERR. ROW means that the family defining the ROW entry has priority and
COLUMN means that the family defining the COLUMN entry has priority. ERR means that it is an
error to interconnect these two inputs. You can also enter OK which signifies that the two families
are equivalent and it doesn’t matter which is chosen. Currently this response is exactly equivalent to
ROW.

• Resolve Out-Out table. Works the same way as the Resolve In-In table but used to define output
priorities.

The tables can be redefined by specifying a file containing the new definition. If running in GUI mode a
new file can be specified at any time using the ReadLogicCompatibility command (Script Reference
Manual/Function Reference/ReadLogicCompatibility). It can also be specified as the configuration setting
CompatTable. The format of this file is described in the following section.

10.4.3 Logic Compatibility File Format

For an example of a compatibility table, see the file COMPAT.TXT which you will find in the SCRIPT
directory. This file is actually identical to the built-in definitions except for the UNIV family which cannot
be redefined.

The file format consists of the following sections:

1. Header

2. In-Out resolution table

3. In-In resolution table

317
SIMetrix Simulator Reference Manual

10.4. Logic Families

4. Out-Out resolution table

Header

The names of all the logic families listed in one line. The names must not use the underscore (‘_’)
character.

In-Out resolution table:

A table with the number of rows and columns equal to the number of logic families listed in the header.
The columns represent outputs and the rows inputs. The entry in the table specifies the compatibility
between the output and the input when connected to each other. The entry may be one of three values:

Value Meaning

OK Fully compatible

WARN Not compatible but would usually function. Warn user but allow simulation to continue.

ERR Not compatible and would never function. Abort simulation.

In-In resolution table

A table with the number of rows and columns equal to the number of logic families listed in the header.
Both column and rows represent inputs. The table defines how inputs from different families are treated
when they are connected. The entry may be one of four values:

Value Meaning

ROW Row take precedence

COL Column takes precedence

OK Doesn’t matter. (Currently identical to ROW)

ERR Incompatible, inputs cannot be connected.

Out-out resolution table

A table with the number of rows and columns equal to the number of logic families listed in the header.
Both column and rows represent outputs. The table defines how outputs from different families are treated
when they are connected. The entry may be one of four values:

Value Meaning

ROW Row take precedence

COL Column takes precedence

OK Doesn’t matter. (Currently identical to ROW)

ERR Incompatible, outputs cannot be connected.

318
SIMetrix Simulator Reference Manual

10.5. Load Delay

10.4.4 Supported Logic Families

The following logic families are supported by the internal Logic Compatibility Tables.

Family name Description

TTL TTL - 74 series

HC High speed CMOS - 74HC series

HCT TTL compatible High speed CMOS - 74HCT series

FAST FAST TTL - 74F series

LS Low power schottky TTL - 74LS series

ALS Advanced low power schottky TTL - 74ALS series

4000-5 4000 series CMOS - 5V operation

4000-10 4000 series CMOS - 10V operation

4000-15 4000 series CMOS - 15V operation

ECL10K ECL 10K series

ECL10KE ECL Eclipse series

AC Advanced CMOS - 74AC series

ACT TTL compatible Advanced CMOS - 74ACT series

FORCE5 Used for 5V VCC rails.

UNIV Universal family - see below

10.4.5 Universal Logic Family

The internal tables support the concept of a ‘Universal logic family’. This is called UNIV and can connect
to any logic family without error. This is the default if no FAMILY parameter is supplied.

10.4.6 Internal Tables

The internal tables are documented in the on-line help system. Refer to topic “Internal Tables” which is
listed as a keyword in the index tab.

10.5 Load Delay

10.5.1 Overview

The digital simulator includes mechanisms to model the delay introduced when an output is loaded. Two
sources of delay are provided for, namely ‘input delay’ and ‘wire delay’. Input delay is determined by the
capacitive input while wire delay is an additional delay caused by the capacitance of the interconnection.

Both input delay and wire delay are affected by the driving outputs ‘resistance’.

319
SIMetrix Simulator Reference Manual

10.6. Digital Model Libraries

10.5.2 Output Resistance

Most devices that have digital outputs have three parameters to define output resistance. Note that the
resistance we are referring to here is not an actual analog resistance but a conceptual value that when
multiplied by load capacitance provides a delay value.

The three output resistance parameters are: out_res, out_res_pos, out_res_neg. out_res_pos and
out_res_neg define the output resistance for positive and negative transitions respectively. out_res provides
a default value for out_res_pos and out_res_neg.

10.5.3 Input Delay

Most digital inputs include an ‘input_load’ capacitance parameter. The total input delay is obtained by
multiplying the sum of all connected input capacitances by the driving output’s output resistance as
described above.

10.5.4 Wire Delay

Wire delay is derived from the number of connected inputs following a non-linear relationship defined in a
look-up table.

Defining Look-up Table

The wire delay look-up table must be defined in a file containing pairs of values with one pair per line. The
first value in the pair is the number of connections and the second is the capacitance. For example:

0 0
1 0
2 1e-12
5 10e-12
10 30e-12

Linear interpolation is used to derive missing values.

To specify the wire table used for a simulation, add the line:

.OPTIONS WireTable=filename

where filename is the path of the wire table file.

10.6 Digital Model Libraries

10.6.1 Using Third Party Libraries

The SIMetrix digital simulator is based on XSPICE and all the XSPICE digital devices have been
implemented. Virtually all of these have been enhanced in a number of ways but all remain backward
compatible with the original XSPICE. Consequently any 100% XSPICE compatible digital model will
work with SIMetrix.

320
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

10.7 Arbitrary Logic Block - User Defined Models

10.7.1 Overview

The arbitrary logic block is an internal component that can be defined to perform any logic function. Using
a simple descriptive language it is possible to define combinational logic elements, synchronous and
asynchronous registers as well as look-up table (ROMs) and arrays (RAMs).

Each ALB device is defined as a normal .MODEL statement which refers to a separate file containing the
logic description. This section is mostly concerned with the descriptive language used in the definition file.

10.7.2 An Example

We start with a simple example. The following is a description of a simple 8 bit synchronous counter.
(This definition would be put into a file referred to in a .MODEL statement. This is described later). A
circuit using this model is supplied as an example. See EXAMPLES/ALB_Examples/count.sch

PORT (DELAY = 10n) CountOut out[0:7] ;
EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;
Count = Count + 1 ;
CountOut = count ;

We will go through this line by line.

The first line:

PORT (DELAY = 10n) CountOut out[0:7] ;

is a PORT statement and in this case defines the characteristics of an output.

(DELAY = 10n)

says that the output delay is 10nS that is the actual output pins will change state 10nS after the output is
assigned.

CountOut

names the output CountOut.

out[0:7]

defines the port as an output and specifies the actual pins used on the device. This specifies the first 8 pins
on the output port. There are two sets of pins on an ALB one assigned for inputs and referred to as
"in[a:b]" and the other assigned for outputs and referred to as "out[a:b]". The line ends in a semi-colon
which terminates the statement. All statements must end in a semi-colon.

The next line:

EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;

defines an edge triggered register.

CLOCK=in[0]

specifies the pin used for the clock (it must always be an input pin). This is always positive edge triggered.

DELAY=5n

This is the clock to output delay. (See illustration below)

WIDTH=8

321
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

This specifies the width of the register i.e. 8 bits

The next line:

Count = Count + 1 ;

defines the operation to be performed at each clock edge. In this case the value in the register is simply
incremented by one. When it reaches 255 it will reset to 0.

The final line

CountOut = count ;

defines what appears at the output. This says that the output equals the count register.

The following diagram illustrates the internal structure of the counter.

Reset Count at 200

We will now make a small modification to the counter so that the counter only counts up to 199 before
resetting back to zero. Change the line:

Count = Count + 1 ;

to:

Count = Count==199 ? 0 : Count + 1 ;

This says ‘If the count equals 199 set to zero otherwise increment by one’. As before, this will happen on
each clock edge.

Add an Asynchronous Reset

The logic definition language supports the addition of asynchronous controls to synchronous registers.
Here we will add an asynchronous reset. The complete definition becomes:

PORT (DELAY = 10n) CountOut out[0:7] ;
PORT Reset in[1] ;

EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;

Count := !Reset ? 0 ;
Count = Count==199 ? 0 : Count + 1 ;

CountOut = count ;

322
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

To add the reset signal we have to add two lines to the definition. The first:

PORT Reset in[1] ;

defines the signal pin to be used for the reset and the second:

Count := !Reset ? 0 ;

defines the action to be taken. This is an asynchronous action statement. The ‘!’ means NOT so the line
says ‘If Reset is NOT TRUE (i.e. low) set the count to zero otherwise do nothing’. Asynchronous action
statements are always of the form:

register_name := condition ? action ;

The ‘:’ signifies that the statement is asynchronous and that the action should happen immediately.

10.7.3 Example 2 - A Simple Multiplier

PORT (DELAY=10n) MultOut out[0:7] ;
PORT in1 in[0:3] ;
PORT in2 in[4:7] ;

MultOut = in1*in2 ;

The above defines a simple combinational circuit, that of a 4X4 digital multiplier. The inputs in1 and in2
are treated as 4 bit unsigned values so if both are zero the output will be zero and if both are 1111 (i.e. 15)
the result will be 11100001 (i.e. 225). See the circuit EXAMPLES/ALB_Examples/Mult.sch.

10.7.4 Example 3 - A ROM Lookup Table

The following definition is that of a lookup table to define a sine wave:

PORT (DELAY=10n) ROMout out[0:7] ;
PORT input in[0:7] ;

READONLY (WIDTH=8) ROM[256] =

128, 131, 134, 137, 140, 143, 146, 149, 152, 156, 159, 162,
165, 168, 171, 174, 176, 179, 182, 185, 188, 191, 193, 196,
199, 201, 204, 206, 209, 211, 213, 216, 218, 220, 222, 224,
226, 228, 230, 232, 234, 236, 237, 239, 240, 242, 243, 245,
246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 254, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 254, 254,
253, 252, 252, 251, 250, 249, 248, 247, 246, 245, 243, 242,
240, 239, 237, 236, 234, 232, 230, 228, 226, 224, 222, 220,
218, 216, 213, 211, 209, 206, 204, 201, 199, 196, 193, 191,
188, 185, 182, 179, 176, 174, 171, 168, 165, 162, 159, 156,
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118,
115, 112, 109, 106, 103, 99, 96, 93, 90, 87, 84, 81, 79, 76,
73, 70, 67, 64, 62, 59, 56, 54, 51, 49, 46, 44, 42, 39, 37,
35, 33, 31, 29, 27, 25, 23, 21, 19, 18, 16, 15, 13, 12, 10,
9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16,
18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 44, 46,
49, 51, 54, 56, 59, 62, 64, 67, 70, 73, 76, 79, 81, 84, 87,
90, 93, 96, 99, 103, 106, 109, 112, 115, 118, 121, 124 ;

ROMout = ROM[input] ;

See the example circuit EXAMPLES/ALB_Examples/SineLookUp.sch

323
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

10.7.5 Example 4 - D Type Flip Flop

The following is the definition for the 74X74 Dtype flip flop supplied with the standard SIMetrix model
library. This model is somewhat more complicated as it models a number of timing artefacts such as setup
time and minimum clock width. Each line below has been annotated to describe its function. Full details
are explained in the following sections.

// Input port definitions
PORT D in[0] ; // D input
PORT CK in[1] ; // Clock
PORT SR in[2:3] ; // Set/reset inputs. r bit 3 s bit 2

PORT out out[0:1] ; // Outputs Q and !Q

// Edge triggered register.
// HOLD is hold time i.e. time after clock edge that data
// must remain stable. Setup time is implemented by
// delaying the D input

// MINCLOCK is minimum clock width.
// USER[n] references values supplied in the .MODEL statement
// The final '=2' initialise the register with the value 2
// i.e. Q=0 and Q!=1
EDGE (WIDTH=2, DELAY=USER[4], HOLD=USER[2], MINCLOCK=USER[3],
CLOCK=in[1]) DTYPE=2;

// COMB defines a combinational register. This is effectively
// a delay element. These delay the D input (to implement
// setup time) and the set/reset inputs to implement minimum
// set and reset times
COMB (DELAY=USER[0], WIDTH=1) D_DEL ;
COMB (DELAY=USER[1], WIDTH=2) SR_DEL ;

// These assign the combinational registers
SR_DEL = SR ;
D_DEL = D ;

// asynchronous action
DTYPE := SR_DEL==1||SR_DEL==2 ? (SR_DEL==2 ? 1 : 2) ;

// synchronous action
DTYPE = D_DEL ? 1 : 2 ;

// Both outputs are forced high if S and R are both active
// Output will be restored to previous value when one of
// S and R becomes inactive
out = SR_DEL==0 ? 3 : DTYPE ;

10.7.6 Device Definition - Netlist Entry and .MODEL Parameters

Netlist entry

Axxxx [in_0 in_1 .. in_n] [out_0 out_1 .. out_n] model_name
+ : parameters

Connection details

Name Description Flow Type

in Input in d

324
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

Name Description Flow Type

out Output out d

Instance parameters

Name Description Type

trace_file Trace file string

user User device parameters real vector

Model format

.MODEL model_name d_logic_block parameters

Model parameters

Name Description Type Default Limits Vector
bounds

file Definition file
name

string none none n/a

def Definition string none none n/a

out_delay Default output
delay

real 1n 1e−12 −∞ n/a

reg_delay Default internal
register delay

real 1n 0−∞ n/a

setup_time Default level
triggered setup
time

real 0 0−∞ n/a

hold_time Default edge
triggered hold
time

real 0 0−∞ n/a

min_clock Default minimum
clock width

real 0 0−∞ n/a

trace_file Trace log file string none n/a

user User defined
parameters

real vector none none none

user_scale Scale of user
values

real 1 0−∞ n/a

input_load Input load value
(F)

real 1p none n/a

family Logic family string UNIV none n/a

in_family Input logic
family

string UNIV none n/a

325
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

Name Description Type Default Limits Vector
bounds

out_family Output logic
family

string UNIV none n/a

out_res Digital output
resistance

real 100 0−∞ n/a

min_sink Minimum sink
current

real -0.001 none n/a

max_source Maximum source
current

real 0.001 none n/a

sink_current Input sink
current

real 0 none n/a

source_current Input source
current

real 0 none n/a

Notes

Usually the logic block definition would be placed in a file referred in the FILE parameter. Alternatively
the definition may be placed directly in the .MODEL statement as the value of the DEF parameter. In this
case the definition must be enclosed in quotation marks (").

The USER_SCALE parameter scales all values found in the USER parameter.

10.7.7 Language Definition - Overview

The following sections describe the full details of the arbitrary logic block language.

All logic definitions are divided into two sections. The first contains the ports and register definitions and
the second section consists of the assignment statements. (The first section can be empty in very simple
cases).

10.7.8 Language Definition - Constants and Names

Constants follow the usual rules. Any decimal number with optional sign and exponent or engineering
suffix is permitted. In addition, numbers in hexadecimal are also allowed. The format is the same as for
the ‘C’ programming language i.e. prefixed with ‘0X’. E.g.:

0X10 = 10 hex = 16.

Identifiers used for register, port and variable names must begin with an alphabetic character or underscore
and consist of alphanumeric characters and underscores.

10.7.9 Language Definition - Ports

Port statements define the inputs and outputs to the logic device. They are of the form

PORT (DELAY=output_delay) port_name OUT [pin1| pin1:pin2]

OR

PORT port_name IN|OUT [pin1| pin1:pin2]

326
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

Ports define a label to a single pin or sequence of pins so that they can be treated as a single entity in the
remainder of the logic definition. In the case of outputs they can optionally also define an output delay. (If
this is not specified a default output delay defined in the devices .MODEL statement is used).

port_name Any name to reference the port. Must start with a letter or underscore and
consist only of letters numbers and underscores. Names are not case
sensitive.

pin1,pin2 Identifies pin or range of pins that port accesses. See next section for more
details.

output_delay Output delay in seconds. When an output port is assigned a value, the
actual output is updated after this delay has elapsed (+ any loading delay).
You may use engineering units in the normal way. E.g. 10n is
10e-9.

Relationship between ports, netlist entry and symbol definition

The netlist entry for an arbitrary logic block is of the form:

Axxx [input_node_list] [output_node_list] model_name

The pin numbers in the port statements above, i.e. pin1 and pin2 are the positions within the
input_node_list for input ports and output_node_list for output ports.

So if the netlist entry is:

A12 [1 2 3 4] [A B C D] ARB1

the port definition:

PORT output OUT[0:3] ;

assigns the label output to the netlist pins A B C and D. If, for example, the value 7 is evaluated and
assigned to output, pins A B and C would be set to a logic ‘1’ and pin D would be set to a logic ‘0’. Pins 1
2 3 & 4 would be used for input ports in a similar way.

The netlist entry relates directly to a symbol definition for an arbitrary logic block. When defining a
symbol to be used with an ALB you should observe the following rules

• The first input pin’s name and the first output pin’s name should both be prefixed with a ‘[’.

• The last input pin’s name and the last output pin’s name should both be suffixed with a ‘]’.

• Use Property/Pin | Edit Pin Order... to define the pin order with input pins first then output pins.

• You should assign a MODEL property with the value ‘A’.

10.7.10 Language Definition - Registers and Variables

Registers are the main working elements of the arbitrary logic block. There are four main types. These are:

• Edge triggered. The value of these change on the rising edge of an assigned clock.

• Level triggered. The value of these change when an assigned enable is at a logic ‘1’ level.

• Combinational. The value of these change after a specified delay.

• Read-only. These are given a fixed value which cannot be changed. These would usually be
arranged in indexable arrays to implement a read only memory.

327
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

Edge and level triggered registers may be arranged in indexable arrays. Level or edge triggered arrays
form a read-write memory or RAM.

In addition to registers there are also local variables. These can be assigned a value that can later be used
in a register assignment.

All registers must be declared. Local variables are declared by simply assigning a value to them.

The syntax for register declarations follow:

Edge Triggered Register Declaration

EDGE (CLOCK=input_pin_spec
[, DELAY=reg_delay]
[, WIDTH=reg_width]
[, MINCLOCK=reg_minclock]
[, HOLD=reg_hold_time]
[, ASYNCDELAY=reg_asyncdelay]
[, BITWISE=0|1]) name [[array_size]]
[= initial_condition *[, initial_condition]] ;

input_pin_spec This specifies which input pin is the clock and must be of the form: IN[n]
where n is a pin number. See Relationship between ports, netlist entry and
symbol definition for details on how pin numbers relate to netlist entries
and symbol definitions.

reg_delay Register delay in seconds. This is the delay between the clock rising edge
and the register value changing. You can use engineering units in the
normal way. Default: REG_DELAY parameter in .MODEL statement
defines default value. This is turn has a default value of 1nS.

reg_width Register width in bits. This has a maximum of 32. Default: 32

reg_minclock Minimum clock width. This must be less than or equal to reg_delay. The
register value will not update if the clock width is less than this value.
Default: MIN_CLOCK parameter in .MODEL statement defines default
value. This in turn has a default value of 0.

reg_hold_time Register hold time. This is the time that the input data (i.e. assignment
value) must remain stable after the clock edge, for the new value to be
accepted. If the BITWISE parameter is set to ‘1’ (which it is by default)
the hold time is applied on a bit by bit basis. That is any individual bit in
the register that remains stable during the hold period will attain the new
value even if other bits violate the hold time. If BITWISE is ‘0’ then if a
single bit violates the hold time, the whole register will remain unchanged
even if some bits remain stable during the hold period. Setting BITWISE
to ‘0’ saves system memory which can be important for large arrays (i.e.
RAMs). Default: HOLD_TIME parameter in .MODEL statement defines
default value. This in turn has a default of 0.

reg_asysncdelay Time the register takes to acquire a value set by an asynchronous
assignment. This must be less than or equal to reg_delay. Default:
reg_delay

BITWISE value See reg_hold_time

Default: ‘1’ for single registers, ‘0’ for arrays.

name Register name.

array_size If specified, the register is arranged as an addressable array of size
array_size.

Default: 1

328
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

initial_condition Value assigned to register when simulation starts.

Default: 0

Notes: To implement register setup time, assign a value to reg_hold_time equal to the sum of the register
setup and hold times then delay the input data by a period equal to the setup time.

Level Triggered Register Declaration

LEVEL (CLOCK=input_pin_spec
[, DELAY=reg_delay]
[, WIDTH=reg_width]
[, SETUP=reg_setup_time]
[, ASYNCDELAY=reg_asyncdelay]
[, BITWISE=0|1] name [[array_size]]
[= initial_condition *[, initial_condition]] ;

input_pin_spec This specifies which input pin is the enable and must be of the form: IN[n]
where n is a pin number. See Relationship between ports, netlist entry and
symbol definition for details on how pin numbers relate to netlist entries
and symbol definitions.

reg_delay Register delay in seconds. If the enable is already high, this is the time
taken for the register to acquire new data. Otherwise it is the delay
between enable rising edge and the register value changing. You can use
engineering units in the normal way. Default: REG_DELAY parameter in
.MODEL statement defines default value. This is turn has a default value
of 1nS.

reg_width Register width in bits. This has a maximum of 32. Default: 32

reg_setup_time Register hold time. This is the time that the input data (i.e. assignment
value) must remain stable prior to an enable falling edge, for the new value
to be accepted. If the BITWISE parameter is set to ‘1’ (which it is by
default) the setup time is applied on a bit by bit basis. That is any
individual bit in the register that remains stable during the setup period will
attain the new value even if other bits violate the setup time. If BITWISE
is ‘0’ then if a single bit violates the setup time, the whole register will
remain unchanged even if some bits remain stable during the setup period.
Setting BITWISE to ‘0’ saves system memory which can be important for
large arrays (i.e. RAMs). Default: SETUP_TIME parameter in .MODEL
statement defines default value. This in turn has a default of 0.

reg_asysncdelay Time the register takes to acquire a value set by an asynchronous
assignment. This must be less than or equal to reg_delay. Default:
reg_delay

BITWISE value See reg_setup_time Default: ‘1’ for single registers, ‘0’ for arrays.

name Register name.

array_size If specified, the register is arranged as an addressable array of size
array_size. Default: 1

initial_condition Value assigned to register when simulation starts. Default: 0

Combinational Register Declaration

COMB ([, DELAY=reg_delay]
[, WIDTH=reg_width]

329
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

[, BITWISE=0|1]) name [= initial_condition] ;

reg_delay Register delay in seconds. You can use engineering units in the normal
way. If BITWISE is ‘1’ (the default) this delay is applied on a bit by bit
basis. If BITWISE is ‘0’ then the delay is applied to the whole register.
That is the output will not change until all inputs have remained stable for
the delay time. Setting BITWISE to ‘0’ is useful when using
combinational registers to implement asynchronous state machines as it
eliminates race conditions. Default: REG_DELAY parameter in .MODEL
statement defines default value. This is turn has a default value of
1nS.

reg_width Register width in bits. This has a maximum of 32. Default: 32

name Register name.

initial_condition Value assigned to register when simulation starts. Default: 0

Read-only Register Declaration

READONLY ([, WIDTH=reg_width] name[[array_size]]
[= initial_condition *[, initial_condition]] ;

reg_width Register width in bits. This has a maximum of 32. Default: 32

array_size If specified, the register is arranged as an addressable array of size
array_size.

Default: 1

name Register name.

initial_condition Value assigned to register when simulation starts.

Default: 0

Read-only registers are usually arranged as an addressable array. When reading a read-only register, the
value returned is the value defined by the initial conditions. As the name implies it is not possible to assign
read-only registers.

10.7.11 Language Definition - Assignments

Registers and output ports can be assigned using the assignment operator ‘=’. Assignment values can be
constants, input ports, other registers, local variables or expressions of any or all of these. Assignments are
of the form:

register | output_port | OUT[pin1:pin2] | OUT[pin1] | local_var = expr ;

OR

clocked_register[index] = expr ;

register Combinational, edge triggered or level triggered register name.

output_port Output port name

pin1, pin2 Output pin numbers. OUT[pin1:pin2] and OUT[pin1] allow outputs to be
assigned with having to declare them in a PORT statement.

330
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

local_var Any name not already used for a port or register. This defines the value for
a local variable that can be used in subsequent expressions. A local
variable may not be used in an expression that precedes its
definition.

expr Local variables, input ports, registers and constant values combined using
arithmetic, Boolean, bitwise Boolean, shift, conditional and relational
operators. See Expression Operators for detailed documentation on all
operators.

clocked_register Edge or level triggered register.

index Array index. This must be smaller than the array size. Arrays are based at
0. That is the first element is zero and the last is (array length-1).

Expression operators

The following table lists all operators available. These are listed in order of precedence. Precedence
determines the order of evaluation. For example in the expression:

var1<var2 && var3<var4

The sub-expressions var1<var2 and var3<var4 are evaluated first and the result of that those evaluations
combined using && to yield the final result. This is because < has higher precedence than &&. The
precedence can be altered using parentheses in the usual way.

Class Operators Description

Index [] E.g. var1[4]. Index operator to access array
element.

Unary + - Operator to single value e.g. -5

Arithmetic multiplicative * / % Arithmetic multiply/divide/modulus treating all
values as unsigned integers. % returns remainder
after division

Arithmetic additive + - Arithmetic operation treating all values as unsigned
integers

Shift « » Shift-left and shift right. E.g. reg1 « 2 will shift reg1
left by two bits

Relational < > <= >= If condition met result is 1 (=TRUE) otherwise result
is zero (=FALSE)

Equality == <> != == means EQUAL

<> and != both mean NOT EQUAL

Return 1 when condition met and 0 when condition
is not met

Bitwise AND & Performs a Boolean AND bit by bit

Bitwise XOR ˆ Performs a Boolean exclusive OR bit by bit

Bitwise OR | Performs a Boolean OR bit by bit

Logical AND && Returns 1 if both values are non-zero (TRUE)
otherwise returns zero (FALSE)

Logical OR || Returns 1 if either value is non-zero (TRUE)
otherwise return zero (FALSE)

331
SIMetrix Simulator Reference Manual

10.7. Arbitrary Logic Block - User Defined Models

Class Operators Description

Conditional expression cond ? res1 : res2 Returns res1 if cond is non-zero (TRUE) otherwise
returns res2

Example A<B ? 16 : 0

returns 16 if A is less than B otherwise returns
0

Note that the operators and their precedence are a subset of those used in the ‘C’ programming language
with the exception of <>.

Controlling Output Enables

An output can be set into a high impedance state using a modification to an output port variable. Use the
suffix .EN after the output port or port identifier to signify that the result of the expression should control
the output enable. E.g. the following is extracted from the 74XX244 definition:

PORT (DELAY=USER[0]) Output out[0:3] ;
Output.En = Out_En_Del ? 0 : 0xf ;

Examples

Y = !Enable ? A_Del != B_Del : 1 ;

If Enable is 0 then Y will be the result of A_Del != B_Del otherwise the result will be 1.

Shift = !Par_En_Del ? Par_Data_Del :(Shift<<1) | Ser_Data_Del;

This describes the action of a parallel loadable shift register.

out[0]= !in[1]&!in[2] | in[1]&!in[2]&in[0] |
!in[1]&in[2]&in[0]

An example of referencing inputs and outputs directly without needing PORT statements.

10.7.12 Language Definition - User and Device Values

Sometimes it is convenient to use the logic description to define the functionality of a block but have the
timing and other specifications specified separately. This is achieved by USER and DEVICE values.
USER values are specified in the .MODEL statement while DEVICE values are specified on the device at
the netlist (or schematic device) level. The values are referenced in the logic definition in the form:

USER[index]

and

DEVICE[index]

These can replace any constant value in an expression, register qualifier or port qualifier. (Register and port
qualifiers are the values in parentheses after the register/port keyword. E.g. DELAY, HOLD, SETUP etc.).

To set USER values in a .MODEL statement, assign the parameter USER. This is a vector parameter, that
is it can have any number of values and these must be enclosed in square brackets ‘[’ and ‘]’. For example:

.MODEL Counter8 d_logic_block file=counter_8.ldf
+ user=[10n, 5n]

332
SIMetrix Simulator Reference Manual

10.8. Mixed-mode Simulator - How it Works

The logic definition to which this model refers - counter_8.ldf - can use USER[0] and USER[1] to refer to
the values 10n and 5n respectively.

To set DEVICE values in a netlist, the netlist entry for the device must be appended with:

: USER=[values]

For example:

A$U3 [clock] [Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7] Counter8 :
+ USER=[10n, 5n]

The logic definition for this device can use DEVICE[0] and DEVICE[1] to access the USER values in the
netlist i.e. 10n and 5n respectively. Always remember to include the colon. This acts as a separator
between the device name and any parameters.

10.7.13 Diagnostics: Trace File

In order to debug models, a tracing facility is provided. If the .MODEL TRACE_FILE parameter or
instance parameter of the same name is specified, a file will be created which lists the values of all internal
registers at each time point.

The file will usually have a number of lines of the form: Roll back to <time>

For example the following is an extract from an actual trace file

5.00022e-05 2696 9 2696 0
5.09397e-05 2696 9 2696 0
5.09407e-05 2692 10 2692 0

Roll back to 5.08599e-05

5.09397e-05 2696 9 2696 0
5.09407e-05 2692 10 2692 0
5.09657e-05 2692 10 2692 0

Roll-back occurs when an analog time step is rejected but the digital simulation has already advanced past
the new analog time. In this case the digital simulator has to back-track events. This mechanism is central
to the operation of the mixed-mode system and is explained in more detail in Mixed-mode Simulator -
How it Works.

10.8 Mixed-mode Simulator - How it Works

10.8.1 Event Driven Digital Simulator

The digital simulator is said to be Event Driven. An event is essentially a change of state e.g. a gate output
changing from logic ‘0’ to logic ‘1’. When an event occurs on an output, all devices with inputs connected
to that output are notified of the event and can respond appropriately by generating new events.

For example, consider the following circuit fragment.

333
SIMetrix Simulator Reference Manual

10.8. Mixed-mode Simulator - How it Works

U1 receives an event, a rising edge at its input at time = T. U1 has a propagation delay of 5.5nS, so on
receipt of the event at its input, U1 posts an event at its output with a time T+5.5nS. At that time this event
is received by U2 and U3. U3 does not respond to this event because one of its inputs is permanently at
logic ‘1’ so its output will always be low. U2, however, does respond and creates a low-high event at a
time delayed by its propagation delay of 6.5nS i.e. T+5.5nS+6.5nS. Any device with an input connected to
the output of U2 will process this new event and so the process continues.

In addition to the propagation delays described above, there are also additional delays caused by loading
effects. Each input has an effective input capacitance and each output a resistance. For each event, an
additional delay is added equal to the sum of all capacitances on the node multiplied by the driving
output’s resistance.

10.8.2 Interfacing to the Analog Simulator

Connections between the analog and digital system are made via special interfaces bridges. (As described
in Analog to Digital Interfaces these bridges are implicitly included by the simulator and it isn’t necessary
for the user to wire them in.) The digital to analog interface has an output that looks like - to a first
approximation - an analog representation of a digital gate. This output changes voltage at a specified rise
and fall time when the digital input changes state. More importantly, the analog system is notified when an
event occurs at the input to a D-A interface bridge and a timestep is forced at that time. This is known as a
breakpoint and is the analog equivalent of an event. The analog system is only notified of events that occur
at the input of D-A bridges. It knows nothing of events that are internal to the digital system.

Analog to digital interface bridges are much like a comparator. When the analog input passes a threshold,
the output state changes appropriately and a digital event is generated.

Time Step Control

With two simulators running largely independently, something is needed to synchronise the timesteps.
Basically the analog system is in control. It tells the digital system to process events up to a certain time,
that time being the analog system’s next anticipated time point. A problem arises, however in that the next
analog timestep is not guaranteed to be accepted. The analog system frequently rejects timesteps either

334
SIMetrix Simulator Reference Manual

10.9. Enhancements over XSPICE

because of slow convergence or because a shorter timestep is needed to maintain the required accuracy. If
the analog system has to cut back the timestep to a point prior to the most recent digital event, then the
digital system has to back-track. This process is known as roll-back and the need for the digital simulator
to be able to perform it substantially increases its complexity. In order to roll-back the digital simulator has
to store its past history back to the most recent accepted analog timepoint

10.9 Enhancements over XSPICE

• Gate delays in XSPICE are stored i.e. like a transmission line not like a real gate. SIMetrix gate
delays are inertial so if a pulse shorter than the propagation delay is received, it is swallowed not
transmitted.

• Automatic interface creation. In XSPICE you have to explicitly join digital and analog nodes via
interface bridges. In SIMetrix this is done automatically.

• Fan out implemented. The underlying mechanism for load dependent delay was there but none of
the models supported it. Static loading effects (as in bipolar logic) was not supported at all. In
SIMetrix it is.

• Input load reflected in analog to digital interfaces. The AD interfaces in XSPICE have infinite input
impedance regardless of what the digital output is driving. SIMetrix AD interfaces reflect the digital
capacitative and static load at their inputs.

• Output strength reflected in digital to analog interfaces. The DA interfaces in XSPICE have zero
output impedance regardless of what is driving them. SIMetrix DA interfaces reflect the strength of
the digital output driving the input. A hi-z logic state will look like a hi-z logic state when
transferred to the analog domain. This is not the case with XSPICE.

• AD interface threshold detection. All AD interfaces switch at a particular input threshold. In the
XSPICE system the output switched at the first analog timepoint that exceeded the threshold. This
could be a long way passed the threshold if the analog time steps are large. In SIMetrix a
mechanism has been implemented that cuts back the time step so that the threshold is hit within a
specified time tolerance.

• Arbitrary logic block device. This allows the definition of any logic device using a simple
descriptive language. The language accommodates combinational logic, synchronous and
asynchronous registers as well as look up tables (i.e. ROMS) and arrays (i.e. RAMs).

• Arbitrary analog to digital converter. Up to 32 bits with specified input range and offset, conversion
time and maximum conversion rate. Output may be in two’s complement or offset binary.

• Arbitrary digital to analogue converter. Up to 32 bit with specified input range and offset and output
slew time. Input may be in two’s complement or offset binary.

• Voltage controlled oscillator (analog in digital out). There was one of these in the original XSPICE
code but it suffered a number of problems and was scrapped. The SIMetrix version is all new.

335
SIMetrix Simulator Reference Manual

Copyright © SIMetrix Technologies Ltd. 1992-2022

SIMetrix 9.1 Simulator Reference Manual

	Introduction
	Overview
	The SIMetrix Simulator - What is it?
	What is in This Manual

	Running the Simulator
	Simulator and Schematic Editor
	Adding Extra Netlist Lines
	Displaying Net and Pin Names
	Editing Device Parameters
	Editing Literal Values - Using shift-F7

	Running in non-GUI Mode
	Overview
	Important Licensing Information
	Syntax
	Aborting
	Reading Data

	Configuration Settings
	Global Settings
	Data Buffering

	Netlist Format
	File Format
	Encoding and International Characters
	Language Declaration
	Comments
	Device Lines
	Simulator Statements

	Simulator Output
	The List File
	The Binary Data File
	Output Data Names

	Controlling Data Saved

	Simulator Devices
	Overview
	Using XSPICE Devices
	Vector Connections
	Connection Types

	Using Expressions
	Overview
	Using Expressions for Device Parameters
	Using Expressions for Model Parameters
	Expression Syntax
	Examples
	Optimisation

	Subcircuits
	Overview
	Subcircuit Definition
	Subcircuit Instance
	Passing Parameters to Subcircuits
	Nesting Subcircuits
	Global Nodes
	Subcircuit Preprocessing

	Model Binning
	Overview
	Defining Binned Models
	Example

	Language Differences
	Inline Comment
	Unlabelled Device Parameters
	LOG() and PWR()

	Customising Device Configuration
	Overview

	Initial Conditions
	Node Initial Condition
	Capacitor Initial Condition
	Inductor Initial Condition

	Analog Device Reference
	Overview
	Further Documentation
	ASM HEMT Gallium Nitride FET Model
	Netlist Entry
	Model Syntax
	Notes

	AC Table Lookup
	Netlist Entry
	Model Format
	AC Table Notes

	Arbitrary Source
	Netlist Entry
	Notes on Arbitrary Expression
	Charge and Flux Devices
	Arbitrary Source Examples
	PSpice and Hspice syntax

	Bipolar Junction Transistor
	Netlist Entry
	NPN BJT Model Syntax
	PNP BJT Model Syntax
	Lateral PNP BJT Model Syntax
	BJT Model Parameters
	Hspice Temperature Parameters
	Notes

	Bipolar Junction Transistor
	Netlist Entry
	Model Syntax
	Model Parameters
	Notes

	Bipolar Junction Transistor
	Netlist Entry
	Model Syntax
	Model Parameters
	Notes

	Bipolar Junction Transistor
	Bipolar Junction Transistor
	Netlist Entry
	NPN Model Syntax
	PNP Model Syntax
	Notes

	Capacitor
	Netlist Entry
	Model Syntax
	Model Parameters

	Controlled Current Source
	Netlist Entry
	Example
	Polynomial Specification

	Current Controlled Voltage Source
	Netlist Entry

	Current Source
	Netlist Entry

	Diode - Level 1 and Level 3
	Netlist Entry
	Examples
	Diode Model Syntax
	Diode Model Parameters - Level = 1
	Diode Model Parameters - Level = 3
	Using Hspice Diodes

	Diode - Soft Recovery
	Netlist Entry
	Diode Model Syntax
	Soft Recovery Diode Model Parameters
	Basic Equations
	References

	Diode CMC
	Netlist Entry
	Diode Model Syntax

	Diode - Perfect
	Netlist Entry
	Perfect Diode Model Syntax
	Perfect Diode Model Parameters
	Basic Equations
	Notes

	Inductor (Ideal)
	Netlist Entry
	See Also

	Inductor (Saturable)
	Netlist Entry
	Model format - Jiles-Atherton model with hysteresis
	Model format - simple model without hysteresis
	Jiles-Atherton Parameters
	Non-hysteresis Model Parameters
	Notes on the Jiles-Atherton model
	Notes on the non-hysteresis model
	Implementing Transformers
	Plotting B-H curves
	References

	Inductor (Table lookup)
	Netlist Entry
	Model syntax
	Boundary Inductance
	Smoothing Function

	IGBT
	Netlist Entry
	Model syntax
	Notes

	Junction FET
	Netlist Entry
	N Channel JFET: Model Syntax
	P Channel JFET: Model Syntax
	JFET: Model Parameters
	Examples

	Laplace Transfer Function - Lumped Implementation
	Netlist entry
	Connection details
	Model format
	Model parameters
	Description
	Examples
	The Laplace Expression
	Defining the Laplace Expression Using Coefficients
	Other Model Parameters
	Limitations
	Implementation

	Laplace Transfer Function - Convolution Implementation
	Netlist Entry
	Model Syntax
	Model Parameters
	Laplace transfer function
	Implementation
	Impulse Response
	Run Time Error Control
	PSpice LAPLACE and FREQ compatibility

	Lossy Transmission Line
	SPICE3 LTRA Lossy Transmission Line
	Subcircuit-based RLGC Model

	MOSFET
	Netlist Entry
	NMOS Model Syntax
	PMOS Model Syntax
	MOS Levels 1, 2 and 3: Model Parameters
	CJ Default
	Gate Charge Model, Levels 1, 2 and 3
	Notes for levels 1, 2 and 3:
	MOS Level 17: Model Parameters
	Notes for level 17

	BSIM3 MOSFETs
	Notes
	Version Selector
	Model Parameters
	Further Documentation
	Process Binning

	BSIM4 MOSFETs
	Notes
	Further Documentation
	Process Binning
	Mapping to Level 54 for Hspice

	BSIM-BULK MOSFET (formerly BSIM6)
	Netlist Entry
	NMOS Model Syntax
	PMOS Model Syntax
	Notes

	BSIM-CMG MOSFET (FinFET)
	Netlist Entry
	NMOS Model Syntax
	PMOS Model Syntax
	Notes

	HiSim HV MOSFET
	Netlist Entry
	NMOS Model Syntax
	PMOS Model Syntax
	Notes

	PSP MOSFET
	Netlist Entry
	NMOS Model Syntax Version 101.0
	PMOS Model Syntax Version 101.0
	NMOS Model Syntax Version 102.3
	PMOS Model Syntax Version 102.3
	Notes

	MOSFET GMIN Implementation
	Resistor
	Netlist Entry
	Notes
	Resistor Model Syntax
	Resistor Model Parameters
	Notes

	Resistor - Hspice Compatible
	Netlist Entry
	Resistor Model Syntax
	Resistance Calculation
	Capacitance Calculation
	Temperature Scaling
	Flicker Noise
	ACRESMOD Parameter
	Making the Hspice Resistor the Default

	CMC Resistor
	Netlist entry
	Model Format

	Subcircuit Instance
	Netlist Entry

	Transmission Line
	Netlist Entry
	Example

	Voltage Controlled Current Source
	Netlist Entry
	PSpice Syntax

	Voltage Controlled Switch
	Netlist Entry
	Voltage Controlled Switch Model Syntax
	Voltage Controlled Switch Model Parameters
	Voltage Controlled Switch Notes

	Voltage Controlled Switch - Perfect
	Netlist Entry
	Perfect Voltage Controlled Switch Model Syntax
	Perfect Voltage Controlled Switch Model Parameters
	Perfect Voltage Controlled Switch Notes

	Voltage Controlled Source
	Netlist Entry
	PSpice Syntax

	Voltage Source
	Netlist Entry
	Pulse Source
	Piece-Wise Linear Source
	PWL File Source
	Sinusoidal Source
	Exponential Source
	Single Frequency FM
	Noise Source
	Extended PWL Source

	Mutual Inductor
	Netlist Entry
	Notes
	Example

	Verilog-HDL Interface (VSXA)
	Overview
	Analog Input Interface
	Analog Output Interface
	Data Vector Output
	Module Cache

	NXP Compact Models
	Introduction
	SIMKIT Devices
	Notes on SIMKIT Models

	LTspice® Devices
	LTspice® Notes

	Digital/Mixed Signal Device Ref
	Device Overview
	Common Parameters
	Delays

	And Gate
	Netlist entry:
	Connection details
	Model format
	Model parameters
	Device operation

	D-type Latch
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	D-type Flip Flop
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Buffer
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Frequency Divider
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Initial Condition
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Digital Pulse
	Netlist entry
	Connection details
	Instance parameters
	Model format
	Model parameters
	Device Operation

	Digital Signal Source
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation
	File Format
	Example

	Inverter
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	JK Flip Flop
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Arbitrary Logic Block
	Netlist entry
	Connection details
	Instance Parameters
	Model format
	Model parameters
	Device Operation

	Nand Gate
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device operation

	Nor Gate
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device operation

	Open-Collector Buffer
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Open-Emitter Buffer
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Or Gate
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device operation

	Pulldown Resistor
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Pullup Resistor
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Random Access Memory
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Set-Reset Flip-Flop
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	SR Latch
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	State Machine
	Netlist entry
	Connection details
	Model format
	Model parameters
	File Syntax
	Notes

	Toggle Flip Flop
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Tri-State Buffer
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Exclusive NOR Gate
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Exclusive OR Gate
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Analog-Digital Converter
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Analog-Digital Interface Bridge
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation
	Analog input load
	Input clamp
	Time Step Control - TIME_TOL parameter

	Digital-Analog Converter
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Digital-Analog Interface Bridge
	Netlist entry
	Connection details
	Model format
	Model parameters
	DC characteristics
	Switching Characteristics

	Controlled Digital Oscillator
	Netlist entry
	Connection details
	Instance Parameters
	Model format
	Model parameters
	Device Operation
	Time Step Control

	Analog-Digital Schmitt Trigger
	Netlist entry
	Connection details
	Model format
	Model parameters
	Device Operation

	Command Reference
	Overview
	General Sweep Specification
	Overview
	Syntax

	Multi Step Analyses
	Overview
	Syntax
	Syntax - Optimiser

	.AC
	Syntax
	Notes
	Examples
	Examples of Nested Sweeps

	.ALIAS
	Syntax
	Example

	.DATA
	Example

	.DC
	Syntax
	Examples
	Examples of Nested Sweeps

	.FILE and .ENDF
	Syntax
	Example
	Important Note
	Using with SIMPLIS

	.FUNC
	Examples
	Optimiser

	.GLOBAL
	.GRAPH
	Parameters
	Using Multiple .GRAPH Statements
	Creating X-Y Plots
	Using .GRAPH in Subcircuits
	Using Expressions with .GRAPH
	Plotting Spectra with .GRAPH

	.IC
	Alternative Initial Condition Implementations

	.INC
	.KEEP
	Option Settings

	.LOAD
	.LIB
	SIMetrix Native Form
	HSPICE Form

	.MAP
	.MAP Notes
	Device Configuration File
	List of All Simulator Devices

	.MODEL
	XSPICE Model Types
	SPICE Model Types
	Safe Operating Area (SOA) Limits
	Example

	.NOCONV
	.NODESET
	.NOISE
	Notes
	Device vector name suffixes
	Creating Noise Info File
	Examples

	.OP
	`OFF' Parameters
	Nodesets
	Initial Conditions
	Operating Point Output Info

	.OPTIMISER
	.OPTIONS
	List of simulator options

	.OPTSPEC
	Notes
	.PARAM
	Examples
	Netlist Order
	Subcircuit Parameters
	Using .PARAM in Schematics
	.PARAM in Libraries

	.POST_PROCESS
	Important Note

	.PRINT
	Notes
	Examples

	.SENS
	.SETSOA
	Examples

	.SUBCKT and .ENDS
	.TEMP
	.TF
	Notes
	Examples

	.TRACE
	Examples
	Notes

	.TRAN
	Fast Start
	Snapshots

	Real Time Noise Analysis
	Example
	Test Results
	Real Time Noise Notes

	Monte Carlo, Sensitivity and Worst-case
	Overview
	Monte Carlo Analysis
	Multi-step
	Single Step Sweep
	Monte Carlo Log File
	Seeding the Random Number Generator

	Sensitivity and Worst-case Analyses
	General Operation
	Multi-step
	Single Step Sweep
	Sensitivity Measurement Functions

	Specifying Tolerances
	Overview
	Distribution Functions
	Hspice Distribution Functions
	TOL, MATCH and LOT Device Parameters

	Optimisation
	Introduction
	Optimiser Modes
	Single analysis mode
	Single analysis mode - Example
	Multi-analysis Mode
	Multi-analysis Mode - Example

	Algorithms
	List of Available Algorithms

	Convergence, Accuracy and Performance
	Overview
	DC Operating Point
	Overview
	Source and GMIN Stepping
	Pseudo Transient Analysis
	Junction Initialised Iteration
	Using Nodesets

	Transient Analysis
	What Causes Non-convergence?
	Numerical Noise and Iteration Modes
	Fix and Improving Transient Convergence

	DC Sweep
	DC Operating Point
	Junction Initialised Iteration
	Source Stepping
	Diagonal GMIN Stepping
	Junction GMIN Stepping
	Pseudo Transient Analysis
	Controlling DC Method Sequence

	Singular Matrix Errors
	Time step too small
	Accuracy, Integration
	A Simple Approach
	Iteration Accuracy
	Time Step Control
	Accuracy of AC analyses
	Summary of Tolerance Options
	Integration Methods - METHOD option

	Multi-Core Systems
	Single Step Runs
	Using Multiple Cores for Single Step Runs
	Multi-core Multi-step Simulation

	Matrix Solver

	Digital Simulation
	Overview
	Logic States
	State resolution table

	Analog to Digital Interfaces
	How A-D Bridges are Selected

	Logic Families
	Logic Family Model Parameters.
	Logic Compatibility Tables
	Logic Compatibility File Format
	Supported Logic Families
	Universal Logic Family
	Internal Tables

	Load Delay
	Overview
	Output Resistance
	Input Delay
	Wire Delay

	Digital Model Libraries
	Using Third Party Libraries

	Arbitrary Logic Block - User Defined Models
	Overview
	An Example
	Example 2 - A Simple Multiplier
	Example 3 - A ROM Lookup Table
	Example 4 - D Type Flip Flop
	Device Definition - Netlist Entry and .MODEL Parameters
	Language Definition - Overview
	Language Definition - Constants and Names
	Language Definition - Ports
	Language Definition - Registers and Variables
	Language Definition - Assignments
	Language Definition - User and Device Values
	Diagnostics: Trace File

	Mixed-mode Simulator - How it Works
	Event Driven Digital Simulator
	Interfacing to the Analog Simulator

	Enhancements over XSPICE

