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Chapter 1

Introduction

1.1 Overview

This manual provides detailed reference material for the SIMPLIS (SIMulation for Piecewise-LInear
System) simulation package. It is intended for those who want to develop a more in-depth understanding
of this software package.

SIMPLIS is a computer software package specifically designed for the simulation and analysis of
switching power supplies. In a typical switching power system, the transistors and the diodes function as
switches, allowing the system to be characterized by a cyclical sequence of linear circuit topologies. By
taking advantage of the repetitive piecewise-linear structure of such systems, SIMPLIS is able to perform
the simulation in an efficient and accurate manner.

In order to avoid potential problems caused by simple syntax errors, SIMPLIS automatically checks the
syntax of the input file provided by the user. If syntax errors are detected in the input file, error messages
are recorded in a file for the user to inspect and correct the errors. This feature allows the user to detect and
correct errors quickly and efficiently.

SIMPLIS-TX is a two-pass time-domain simulator. In the first pass of a simulation run, only the data
pertaining to the state of the simulation at the switching instances are saved. In the second pass, called the
Post-Simulation Processing run, detailed waveform information is reconstructed from the data generated
in the first pass. At the user-interface level, these two separate operations are not distinguishable since they
are executed automatically by SIMPLIS. Thus SIMPLIS appears as a one-pass simulator to the user. This
internal two-step simulation technique optimizes the simulation speed and versatility of SIMPLIS.

SIMPLIS-POP (Periodic Operating Point) is an analysis tool that accelerates the convergence to the
steady-state solution of switch-mode power systems. By taking into consideration the variation of the
timing of the intracycle intervals of a switch-mode system with respect to changes in the state vector, the
POP analysis tool accurately calculates the steady-state solution.

SIMPLIS-FX is a special small-signal frequency-domain analyzer developed for the analysis of switching
power supplies. By calculating the circuit’s response, over a range of frequencies, to a small perturbation
in the time domain and then using fast fourier analysis techniques, the necessity of developing state-space
averaged equivalent circuits is avoided. SIMPLIS-FX accurately computes the frequency response from
the same schematic used for time-domain simulation.

1.2 Organization of this User Manual

This user manual is made up of the following chapters.

Chapter 1 is the introduction (this chapter).
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1.2. Organization of this User Manual

Chapters 2-6 explain the syntax and format of input files:

Chapter 2 describes the organization and the basic rules governing the input file.

Chapters 3 and 4 cover the format rules for specifying various device types.

Chapter 5 explains the definition of subcircuits.

Chapter 6 describes control statements.

Chapters 7-9 explains the execution of SIMPLIS:

Chapter 7 explains the SIMPLIS commands and command-line options.

Chapter 8 gives a synopsis of the data files generated by SIMPLIS.

Chapter 9 provides a set of examples illustrating the capabilities, features and the simulation options.

Chapter 10 explains the SIMPLIS-POP (Periodic Operating Point) analysis tool.

Chapter 11 explains the SIMPLIS-FX small-signal frequency-domain analyzer.
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Chapter 2

Input File Organization

2.1 Overview

SIMPLIS uses a single text input file to define:

1. The interconnections and components forming the circuit,

2. The options that apply in the analysis, and

3. The specific analyses to be performed.

In this chapter, General Rules for the Input File defines the general rules for the input file and Organization
of the Input File explains the organization of the input file.

2.2 General Rules for the Input File

Statements and Continuation of Statements

The input file for the SIMPLIS package is organized into different statements. Ordinarily, the end of a line
signifies the end of a statement. However, a statement can be continued on to the next line by using the
line continuation character, the plus sign (‘+’). Refer to Continuation of Statements for more about the
continuation of statements.

Blank Characters

Within a single statement, the data are organized into different fields. Fields are separated by one or more
spaces or tabs. Spaces and tabs are called blank characters. While blank characters must be used to
separate different fields, the presence of at least one blank character between two groups of non blank
characters does not always mean the two groups of characters belong to two different fields. Blank
characters may be present within a single field. In general, blank characters are used to separate different
fields or to improve the readability of the input file.

Blank Lines

Blank lines can be placed anywhere in the input file to make the file more readable. Blank lines have no
effect on the execution of the program.
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2.2. General Rules for the Input File

Comment Statements

Comment statements are used to make the input file more readable. A comment is identified by an asterisk
(‘*’) as the first character, at the beginning of a line. Comment statements which are several lines long
must have a comment character at the beginning of each line. Comment statements are ignored during
program execution.

In-line Comments

An in-line comment is a comment that starts in the middle of a line. The in-line comment is identified by
the semicolon character, (‘;’), placed at the beginning of the comment section. The portion of the line to
the right of the in-line comment symbol is ignored by SIMPLIS. For example, in SIMPLIS, the following
two lines are equivalent:

RC 1 0 1K ;esr of c1

RC 1 0 1K

Continuation of Statements

A statement can be continued to the next line by using the line continuation character, the plus sign (‘+’).
Any line whose first non blank character is the line continuation character is considered the continuation of
the previous line. For example, the following lines form one single statement:

V1 1 0 PUL V1=0 V2=1
+ FREQ=1MEG DRATIO=0.1 DELAY=0.1
+ OFF_UNTIL_DELAY=YES

A comment statement cannot be followed by a line continuation statement.

Device Names

The name of a device is formed by the concatenation of two parts: the element keyword and the individual
name. The element keyword is a character string of one or two characters. The individual name is a
character string of arbitrary length. You should keep the individual name descriptive and short (no more
than sixteen characters).

Element Keyword

The table below shows the relationship between each element keyword and the type of corresponding
circuit elements.

Element Keyword Type of Element

R Linear Resistor

L Linear Inductor

C Linear Capacitor

V Independent Voltage Source

I Independent Current Source

M Linear Mutual Inductance

E Linear Voltage-Controlled Voltage Source
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2.2. General Rules for the Input File

Element Keyword Type of Element

G Linear Voltage-Controlled Current Source

H Linear Current-Controlled Voltage Source

F Linear Current-Controlled Current Source

!T Ideal Transformer

Q Simple Transistor Switch

S Simple Switch

!R Piecewise-Linear Resistor

!L Piecewise-Linear Inductor

!C Piecewise-Linear Capacitor

!D Simple Logic Gates

X Instantiation of subcircuits

Individual Name

An individual name is a string made up of zero or more characters from the following character set:

Alphabetic characters a-z A-Z

Numeric characters 0-9

Underscore _

Examples of Device Names

The following entries are all legal device names for inductors:

L La LA L1 L_MAG

Model Names and Subcircuit Names

SIMPLIS supports the concept of device models and subcircuits in the input file. The name of a model or a
subcircuit is a string that is made up of the same characters as those outlined in See Individual Name for
the individual name of a device. In addition, each of the following conditions must also be satisfied:

1. A model name or a subcircuit name must have at least one character.

2. A model or subcircuit name must contain at least one alphabet character.

3. The first character in a model or subcircuit name must not be the underscore character (‘_’).

Uppercase vs. Lowercase

SIMPLIS is case sensitive to individual device names . For example, the following device names are two
different inductors:

La

LA
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2.2. General Rules for the Input File

However, SIMPLIS is not case sensitive to element keywords . For example, the following names are the
same inductor:

La

la

because the first character (‘l’ or ‘L’) is the element keyword for a device name.

The interpretation of the model names and subcircuit names follows the same interpretation as the
operating system of the host. If the operating system is case sensitive to file names, then SIMPLIS is case
sensitive to model names and subcircuit names. If the operating system is not case sensitive to file names,
then SIMPLIS is not case sensitive to model names and subcircuit names. For example, UNIX operating
systems are case sensitive, while Windows operating systems are not.

Integer Entries

Some input statements may have fields or parameters which are required to be integers. The legal format
for an integer entry is:

[-]d[d...]

where

[-] is the optional negative sign associated with a negative integer,

d is a numeral in the range of 0 through 9, and

[d...] is an optional string of extra digits.

The following are legal entries:

-34 0 25 -27 301

The following are illegal integer entries:

- +1 23. 24.5

They are illegal integer entries because

1. The negative sign is not followed by a numeral;

2. +1 begins with a positive sign, which is illegal;

3. The numbers 23. and 24.5 have decimal points.

Floating-point Entries

From time to time, a certain field or parameter in a statement calls for a floating-point entry. A
floating-point entry can be typed in several possible formats:

1. Integer format

2. Simple floating-point format

3. Exponential format

4. Engineering format
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2.2. General Rules for the Input File

Integer Format in Floating-point Entries

Whenever a floating-point entry is expected, the entry can be typed in the integer format as defined in
Integer Entries if the corresponding entry turns out to be an integer. For example, if 34 is to be typed as a
floating-point entry, it can be typed as 34 without the accompanying decimal point.

Simple Floating-point Format

The simple floating-point format is defined as

[-]d[d...].[d...] or [-].d[d...]

where

[-] is the negative sign associated with a negative integer,

d is a numeral in the range of 0 through 9,

. is the decimal point, and

[d...] is an optional string of extra digits.

Examples of the use of the simple floating-point format are:

9.37 -0.5 1001.76

Similar to an integer entry, a floating-point entry cannot begin with a positive sign.

Exponential Floating-point Format

The exponential floating-point format is defined as

[if]E[+-]d[d] or [sfpf]E[+-]d[d]

where

[if] is a number in the integer format,

[sfpf] is a number in the simple floating-point format,

E is either the character e or the character E,

[+ -] is either the positive sign or the negative sign,

d is a numeral in the range of 0 through 9, and

[d] is an optional extra digit in the exponent.

The following examples are equivalent entries:

27000 2.7e+04 27E+3

Engineering Floating-point Format

The engineering floating-point format is defined as

[if]S or [sfpf]S or [efpf]S

where

[if] is a number in the integer format,
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2.2. General Rules for the Input File

[sfpf] is a number in the simple floating-point format,

[efpf] is a number in the exponential floating-point format, and

S is one of the character strings used to represent one of the scale factors. The
string can be entered in either lower or upper case.

The following examples are equivalent entries:

27k 27K 27000 27000 2.7E+4 27e-03MEG

The table below shows all the engineering prefixes recognized by SIMPLIS, and their corresponding scale
values.

Prefix Types

Symbol Prefix Scale Factor

F femto 10 -15

P pico 10 -12

N nano 10 -9

U micro 10 -6

M milli 10 -3

K kilo 10 +3

MEG mega 10 +6

G giga 10 +9

T tera 10 +12

Illustrations of Legal and Illegal Floating-point Entries

The following entries are all valid floating-point entries:

0 -3 3. 0.3 31.12 -.12E-06 3.12e+3 1.1K -150U

The entries 0 and -3 are in integer format. The entries 3., 0.3, and 31.12 are in simple floating-point
format. The entries -.12E-06 and 3.12e+3 are in exponential format. The entries 1.1K and -150U are in
engineering format.

The following are illegal floating-point entries:

+0.7 3.12E+345 4.7 K

They are illegal because

1. +0.7 contains the illegal positive sign;

2. The exponent in 3.12E+345 is more than two digits long;

3. 4.7 K has an extra space between the number 4.7 and the scale factor K.

Units

SIMPLIS works with System Internationale (SI) units. The table below gives a summary of all units
expected for different types of variables. Units are not allowed to be specified with the values of the
corresponding variables. For example, a capacitance of 1.25 microfarads may be represented by 1.25U or
0.00000125, but not 1.25UF or 0.00000125F.
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2.3. Organization of the Input File

Unit Types

Variable Units

Time second

Resistance ohm

Capacitance farad

Inductance henry

Voltage volt

Current ampere

Charge coulomb

Length of Fields and Lines

Each field of entry should be restricted to no more than 80 characters long. Each input line should be
restricted to no more than 160 characters long. This restriction does not limit the length of a statement
since it can continue over several lines through the line continuation character.

2.3 Organization of the Input File

SIMPLIS supports the concept of a main circuit and subcircuits in the definition of the system to be
analyzed. A subcircuit can be nested within another subcircuit for up to 20 levels of nesting, with the main
circuit considered as the first level of nesting. Since the definitions for the main circuit and a subcircuit are
similar, the term general circuit is used here to represent either the main circuit or a subcircuit.

General Circuit

The general circuit is defined by the following statements:

1. Start Circuit Statement

2. Comment Statements

3. Device Statements

4. Model Statements

5. Subcircuit Definition Statements

6. Control Statements

7. End Circuit Statement

Subcircuit Definition Statements defining a subcircuit follow the same pattern of statements outlined here
for the general circuit. The forms of the Start Circuit Statement and End Circuit Statement depend on
whether the general circuit is the main circuit or a subcircuit. The forms of the rest of the statements
remain the same for both the main circuit and subcircuits.
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2.3. Organization of the Input File

Sequence of Statements

The scope of definition for a general circuit begins at the Start Circuit Statement and stops at the End
Circuit Statement, inclusively. Statements within the scope of definition of a general circuit can be placed
in any sequence without any effect on the reading of the input file, with the following exceptions:

1. In the definition of a general circuit, the Start Circuit Statement and the End Circuit Statement must
be the first and the last statements, respectively.

2. Analysis statements are special control statements. The order in which analysis statements appear in
the input file determines the order in which SIMPLIS performs different analyses.

Main Circuit

Title Statement (Start of Main Circuit Statement)

The first line in the input file is the Title Statement. This statement is the Start Circuit Statement for the
main circuit, and it is copied to some of the data files generated by SIMPLIS for annotation purpose. The
Title Statement must be only one line long. It cannot be extended over additional lines by using the line
continuation character.

.END Statement (End of Main Circuit Statement)

The first statement in the input file that has the first field matching the keyword .END is the end of main
circuit statement. This statement is the End Circuit Statement for the main circuit. Any input lines
following this .END statement in the input file are ignored by SIMPLIS. Since .END is a keyword, its
interpretation is case insensitive. No other fields are allowed in this statement. It cannot be extended over
additional lines by using the line continuation character

Subcircuit

The details of the SIMPLIS subcircuit feature are explained in Subcircuit Definition. The following two
subsections give a brief outline of how the subcircuits are defined.

.SUBCKT Statement (Start of Subcircuit Statement)

Any statement whose first field matches the keyword .SUBCKT starts the definition of a subcircuit. The
.SUBCKT statement is the Start Circuit Statement for a subcircuit. The keyword .SUBCKT is followed by
the name of the subcircuit and a group of node names.

.ENDS Statement (End of Subcircuit Statement)

A statement whose first field matches the keyword .ENDS is the end of the subcircuit statement. This
statement is the End Circuit Statement for a subcircuit. The .ENDS statement can have two forms. In the
first form, the .ENDS keyword is the only field in the statement. In the second form, the .ENDS keyword
is followed by the name of a proper subcircuit.
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2.3. Organization of the Input File

General Statements

Comment Statements

See Comment Statements and In-line Comments for an explanation on the use of comments in the input
file.

Device Statements

A device statement defines the parameter values of the device and indicates how it is connected to the
circuit. When a model name or initial condition is required for a device, they are also defined in the device
statement. Device Statements provides a detailed description of the syntax of device statements.

Model Statements

The model statement defines the parameters associated with a particular device model. Once a model is
defined, it allows SIMPLIS to insert the model characteristics for every device associated with that model
name. The Model Statement always starts with the keyword .MODEL as the first field in the statement.
The following is a typical model statement for a diode, modeled as a piecewise-linear resistor:

. MODEL MD1M VPWLR NSEG=2 X0=0 Y0=0 X1=0.7 Y1=10U
+ X2=0.8 Y2=1

Model Statements describes the syntax for model statements.

Control Statements

Control Statements start with the period character (‘.’), and can be classified into one of the following
types:

1. Options

2. Initial conditions

3. Resource limits

4. Analyses

Although all control statements start with a period character, not all statements which start with a period
are control statements. For example, statements beginning with keywords such as .MODEL, .SUBCKT,
.END and .ENDS which start with a period character are not control statements. Control Statements
explains the meaning and syntax of all control statements supported by SIMPLIS.
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3.1. Overview

Chapter 3

Device Statements

3.1 Overview

Device Statement Format

The device statement defines how a device is connected in the circuit, and lists the values for the individual
device parameters. If a device requires a device model or some initial condition, such information is also
defined in the device statement. The format for a device statement is defined as follows:

DeviceName NodeName {Values|ModelName} [InitConds]

where

DeviceName is a legal device name

NodeName is a sequence of legal node names

Values is either a floating-point entry to stand for value or a sequence of parameter
assignments

ModelName is the legal name of a compatible model. The symbol {Values|ModelName}
means Values and ModelName are mutually exclusive. If a device requires
a model name, no Values would be given in the device statement and vice
versa

InitConds is a sequence of legal initial condition specifications. The symbol [Init-
Conds] means the presence of the InitConds fields is optional since only
some devices require initial conditions.

The individual fields in each device statement must appear exactly in the order indicated in this chapter.
Any different sequence will cause SIMPLIS to misinterpret the statement or generate an error message.

Node Names

Each node in the circuit must be assigned a unique name. A legal node name is either a positive integer or
zero. Remember that node 0 is traditionally reserved to represent the ground node. Also note that:

1. SIMPLIS does not require the presence of node 0 in the system unless the user wants to inspect the
voltage of a particular node with respect to a certain ground node

2. SIMPLIS does not require every node in the system to be connected to each other, allowing the
system to have isolated subsystem. However, error messages will be generated if the user instructs
SIMPLIS to determine the voltage between two electrically isolated nodes.
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3.1. Overview

Voltage and Current Polarity Conventions

Most of the circuit elements discussed in this chapter are two-terminal elements. For any general
two-terminal element, there is a positive node n+ and a negative node n- as shown in the diagram below:

3.1 Definition of the voltage and the current association for a two-terminal element.

Whenever the voltage across a two-terminal element is mentioned in this manual, it refers to the voltage
measured at the positive node with respect to the voltage at the negative node. For example, the voltage of
the generalized two-terminal device in See Definition of the voltage and the current associated for a
two-terminal element is equal to

V = Vn+ - Vn-

as measured from the n+ terminal to the n- terminal.

When the current through a two-terminal device is mentioned in this manual, it refers to the current
measured in the direction from the positive node through the element to the negative node. Thus, a positive
current indicates that there is a net flow of charge into the positive node, through the two-terminal element,
and then out of the negative node.

With these sign conventions for voltages and currents, a positive voltage-current product indicates that
electric power is instantaneously flowing into the corresponding two-terminal element, whether it is a
voltage or current source, a resistor, or any other two-terminal element.

Parameter Assignments

Parameters such as the initial conditions for devices are entered in a format called parameter assignments.
The format is

KEYWORD=value

where

KEYWORD is the corresponding keyword representing the descriptive name of the pa-
rameter,

= is the equal sign (‘=’), and

value is the value assigned to the parameter.
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3.2. SIMPLIS Device Types

To make the input file more readable, blank characters can appear before and/or after the equal sign (‘=’).
In addition, if the equal sign is the last significant character in the current line, the value can appear in the
next line through the use of the line continuation character, the plus sign (‘+’).

Controlling Devices

The four controlled sources, the simple transistor switch, and the simple switch are each controlled by a
controlling variable that is external to the device. There are three types of controlling variables:

1. A differential voltage across two nodes in the same circuit,

2. A branch voltage across the positive and negative nodes of a controlling device in the same circuit, or

3. A current through a controlling device in the same circuit.

A controlling device can be any one of the following device types:

Linear resistors

Linear inductors

Linear capacitors

All types of independent voltage sources

All types of independent current sources

All four types of linear controlled sources

Simple transistor switches

Simple switches

Piecewise-linear resistors

Piecewise-linear inductors

Piecewise-linear capacitors

3.2 SIMPLIS Device Types

Linear Resistors

The format for a linear resistor is:

Rname n+ n- value

where

R is the one-character element keyword “R” for linear resistors

name is the individual name of the device

n+ is the name of the positive node, and is a nonnegative integer

n- is the name of the negative node, and is a nonnegative integer

value is a floating-point number assigned as the value of the resistance (in ohms).
This value can be positive, zero, or negative

Linear Inductors and Capacitors

The formats for a linear inductor and a linear capacitor are:
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3.2. SIMPLIS Device Types

Lname n+ n- value IC=init_cond

Cname n+ n- value IC=init_cond

where

L is the one-character element keyword “L” for linear inductors

C is the one-character element keyword “C” for linear capacitor

name is the individual name of the device

n+ is the name of the positive node, and is a nonnegative integer

n- is the name of the negative node, and is a nonnegative integer

value is a floating-point number assigned as the value of the inductance (in hen-
ries) for an inductor or the value of the capacitance (in farads) for a capaci-
tor. The value can be positive or negative, but not zero

IC= is the three-character keyword “IC=”

init_cond is a floating-point number assigned as the value of initial condition. It is the
initial current (in amperes) for an inductor or the initial voltage (in volts)
for a capacitor

Independent Voltage and Current Sources

DC Sources

The formats for the dc sources are:

Vname n+ n- DC value

Iname n+ n- DC value

where

V is the one-character element keyword “V” for independent voltage
sources

I is the one-character element keyword “I” for independent current
sources

name is the individual name of the device

n+ is the name of the positive node, and is a nonnegative integer

n- is the name of the negative node, and is a nonnegative integer

DC is the two-character keyword “DC” to signify that this is a DC
source

value is a floating-point number assigned as the source value. It is the voltage
across the source element (in volts) for a dc voltage source or the current
through the source (in amperes) for a dc current source

Sawtooth Sources

The format for the independent sawtooth voltage source is:

Vname n+ n- SAW V1=v1 V2=v2
+ FREQ=freq DELAY=delay
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+ OFF_UNTIL_DELAY={YES|NO}
+ IDLE_IN_POP=YES|NO

The format for the independent sawtooth current source is:

Iname n+ n- SAW V1=v1 V2=v2
+ FREQ=freq DELAY=delay
+ OFF_UNTIL_DELAY={YES|NO}
+ IDLE_IN_POP=YES|NO

where

V is the one-character element keyword “V” for independent voltage
sources

I is the one-character element keyword “I” for independent current
sources

name is the individual name of the device

n+ is the name of the positive node, and is a nonnegative integer

n- is the name of the negative node, and is a nonnegative integer

SAW is the three-character keyword “SAW” to signify that this is a sawtooth
source

V1= is the three-character keyword “V1=” representing the source value at the
start of a normal cycle

v1 is a floating-point number assigned as the value of V1 (in volts) for a voltage
source and the value of V1 (in amperes) for a current source

V2= is the three-character keyword “V2=” representing the source value at the
end of a normal cycle

v2 is a floating-point number assigned as the value of V2 (in volts) for a voltage
source and the value of V2 (in amperes) for a current source

FREQ= is the five-character keyword “FREQ=”

freq is a positive floating-point number assigned as the frequency of this source
(in hertz)

DELAY= is the six-character keyword “DELAY=”

delay is a floating-point number assigned as the value of DELAY (in sec-
onds)

OFF_UNTIL
_DELAY=

is the sixteen-character keyword “OFF_UNTIL_DELAY=”

YES is the three-character keyword “YES”

NO is the two-character keyword “NO”

IDLE_IN_POP= may have values YES or NO. Default is NO. If YES, the source will be
inactive during POP and AC analyses. Inactive means that the source will
hold its t=0 value throughout the analysis. If NO the source will behave
normally during POP and AC analyses

The plus characters shown in the format definition are not necessary if carriage returns are not used in the
statement. The plus characters and the carriage returns have been added to break the statements over
different lines to make them easier to read. Using the function s(t) to represent the voltage across the
voltage source or the current through the current source, the value of the source function s(t) in the
diagram below for t > delay is defined as:

s(t) = v1 + [(v2 − v1)(t− delay)]/T
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for delay < t < (delay + T )

and:

s(t) = s(t− T )

for (delay + T ) < t

where

T=1/(freq) is the period of the waveform

The source function s(t) for t < delay is defined as follows

s(t) = s(t+ T )

for 0 < t < delay and OFF_UNTIL_DELAY=NO

and

s(t) = v1

for 0 < t < delay and OFF_UNTIL_DELAY=YES

Whether the delay is positive or negative, the time-domain transient analysis performed by SIMPLIS
always starts with the time variable set equal to 0.0.

The diagram below shows the waveforms of a sawtooth source. For t < delay and OFF_UNTIL
_DELAY=YES, the waveform s(t) is shown in bold dashed line. For t < delay and OFF_UNTIL
_DELAY=NO, the waveform s(t) is shown in heavy gray line.

3.2 Waveform s(t) of a sawtooth source

Triangular Sources

The formats for independent triangular voltage and current sources are:

Vname n+ n- TRI V1=v1 V2=v2
+ FREQ=freq DRATIO=dratio DELAY=delay
+ OFF_UNTIL_DELAY={YES|NO} IDLE_IN_POP=YES|NO
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and

Iname n+ n- TRI V1=v1 V2=v2
+ FREQ=freq DRATIO=dratio DELAY=delay
+ OFF_UNTIL_DELAY={YES|NO} IDLE_IN_POP=YES|NO

where

V is the one-character element keyword “V” for independent voltage
sources

I is the one-character element keyword “I” for independent current
sources

name is the individual name of the device

n+ is the name of the positive node, and is a nonnegative integer

n- is the name of the negative node, and is a nonnegative integer

TRI is the three-character keyword “TRI” to signify that this is a triangular
source

V1= is the three-character keyword “V1=” representing the source at the start of
a normal cycle

v1 is a floating-point number assigned as the value of V1 (in volts) for a voltage
source or the value of V1 (in amperes) for a current source

V2= is the three-character keyword “V2=” representing the source at the end of
a normal cycle

v2 is a floating-point number assigned as the value of V2 (in volts) for a voltage
source or the value of V2 (in amperes) for a current source

FREQ= is the five-character keyword “FREQ=”

freq is a positive floating-point number assigned as the frequency of this source
(in hertz)

DRATIO= is the seven-character keyword “DRATIO=”

dratio is a dimensionless floating-point number between 0.0 and 1.0, exclusively,
assigned as the value of DRATIO

DELAY= is the six-character keyword “DELAY=”

delay is a floating-point number assigned as the value of DELAY (in sec-
onds)

OFF_UNTIL
_DELAY=

is the sixteen-character keyword “OFF_UNTIL_DELAY=”

YES is the three-character keyword “YES”

NO is the two-character keyword “NO”

IDLE_IN_POP= may have values YES or NO. Default is NO. If YES, the source will be
inactive during POP and AC analyses. Inactive means that the source will
hold its t=0 value throughout the analysis. If NO the source will behave
normally during POP and AC analyses

The source function s(t) for t > delay is defined as follows:

s(t) = v1 + [(v2 − v1)(t− delay)]/t1

for delay < t < (delay + t1)

s(t) = v2 + [(v1 − v2)(t− delay − t1)]/(T − t1)
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for (delay + t1) < t < (delay + T )

and

s(t) = s(t− T )

for (delay + T ) < t

where

T=1/(freq) is defined as the period of the waveform

t1=DRATIO*T is the duration in a period of the waveform where the source value is moving
from the value of v1 to the value of v2.

The source function s(t) for t < delay is defined as follows:

s(t) = s(t+ T )

for 0 < t < delay and OFF_UNTIL_DELAY=NO

and

s(t) = v1for0 < t < delay and OFF_UNTIL_DELAY=YES.

Again, whether the delay is positive or negative, the time-domain transient analysis performed by the
simulation always starts with the time variable set equal to 0.0. The diagram below shows the waveform,
s(t), of a typical triangular source. For t < delay and OFF_UNTIL_DELAY=YES, the waveform s(t) is
shown in bold dashed line. For t < delay and OFF_UNTIL_DELAY=NO, the waveform s(t) is shown in
heavy gray line.

3.3 Waveform s(t) of a triangular source

Square Wave Sources

The formats for independent square-wave voltage and current sources are:
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Vname n+ n- SQU V1=v1 V2=v2 FREQ=freq
+ DELAY=delay OFF_UNTIL_DELAY={YES|NO}
+ [IDLE_IN_POP=YES|NO]

and

Iname n+ n- SQU V1=v1 V2=v2 FREQ=freq
+ DELAY=delay OFF_UNTIL_DELAY={YES|NO}
+ [IDLE_IN_POP=YES|NO]

where

V is the one-character element keyword “V” for independent voltage
sources

I is the one-character element keyword “I” for independent current
sources

name is the individual name of the device

n+ is the name of the positive node, and is a nonnegative integer

n- is the name of the negative node, and is a nonnegative integer

SQU is the three-character keyword “SQU” to signify that this is a square
source

V1= is the three-character keyword “V1=” representing the source at the start of
a normal cycle

v1 is a floating-point number assigned as the value of V1 (in volts) for a voltage
source and the value of V1 (in amperes) for a current source

V2= is the three-character keyword “V2=” representing the source at the end of
a normal cycle

v2 is a floating-point number assigned as the value of V2 (in volts) for a voltage
source and the value of V2 (in amperes) for a current source

FREQ= is the five-character keyword “FREQ=”

freq is a positive floating-point number assigned as the frequency of this source
(in hertz)

DELAY= is the six-character keyword “DELAY=”

delay is a floating-point number expressing DELAY (in seconds)

OFF_UNTIL
_DELAY=

is the sixteen-character keyword “OFF_UNTIL_DELAY=”

YES is the three-character keyword “YES”

NO is the two-character keyword “NO”

IDLE_IN_POP= may have values YES or NO. Default is NO. If YES, the source will be
inactive during POP and AC analyses. Inactive means that the source will
hold its t=0 value throughout the analysis. If NO the source will behave
normally during POP and AC analyses

The source function s(t) for t > delay is defined as follows:

s(t) = v2 for delay < t < (delay + T/2):

s(t) = v1 for (delay + T/2) < t < (delay + T ):

s(t) = s(t− T ) for (delay + T ) < t:

The source function s(t) for t < delay is defined as follows
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s(t) = s(t+ T ) for 0 < t < delay and OFF_UNTIL_DELAY=NO

s(t) = v1 for 0 < t < delay and OFF_UNTIL_DELAY=YES

where

T=1/freq T is defined as the period of the waveform

The waveform s(t) of a typical squarewave source is illustrated in the diagram below. For t < delay and
OFF_UNTIL_DELAY=YES, the waveform s(t) is shown in bold dashed line. For t < delay and OFF
_UNTIL_DELAY=NO, the waveform s(t) is shown in heavy gray line.

3.4 Waveform s(t) of a square wave source

Pulse Sources with Zero Rise and Fall Times

The formats for the independent rectangular pulse sources are

Vname n+ n- PUL V1=v1 V2=v2 FREQ=freq
+ DRATIO=dratio DELAY=delay
+ OFF_UNTIL_DELAY={YES|NO}
+ [IDLE_IN_POP=YES|NO]

and

Iname n+ n- PUL V1=v1 V2=v2 F REQ=freq
+ DRATIO=dratio DELAY=delay
+ OFF_UNTIL_DELAY={YES|NO}
+ [IDLE_IN_POP=YES|NO]

V is the one-character element keyword “V” for independent voltage
sources

I is the one-character element keyword “I” for independent current
sources

name is the individual name of the device

n+ is the name of the positive node, and is a nonnegative integer

n- is the name of the negative node, and is a nonnegative integer

PUL is the three-character keyword “PUL” to signify that this is a rectangular
pulse source

V1= is the three-character keyword “V1=” representing the source at the start of
a normal cycle
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v1 is a floating-point number assigned as the value of V1 (in volts) for a voltage
source and the value of V1 (in amperes) for a current source

V2= is the three-character keyword “V2=” representing the source at the end of
a normal cycle

v2 is a floating-point number assigned as the value of V2 (in volts) for a voltage
source and the value of V2 (in amperes) for a current source

FREQ= is the five-character keyword “FREQ=”

freq is a positive floating-point number assigned as the frequency of this source
(in hertz)

DRATIO= is the seven-character keyword “DRATIO=”

dratio is a dimensionless floating-point number between 0.0 and 1.0, exclusively,
assigned as the value of DRATIO

DELAY= is the six-character keyword “DELAY=”

delay is a floating-point number assigned as the value of DELAY (in sec-
onds)

OFF_UNTIL
_DELAY=

is the sixteen-character keyword “OFF_UNTIL_DELAY=”

YES is the three-character keyword “YES”

NO is the two-character keyword “NO”

IDLE_IN_POP= may have values YES or NO. Default is NO. If YES, the source will be
inactive during POP and AC analyses. Inactive means that the source will
hold its t=0 value throughout the analysis. If NO the source will behave
normally during POP and AC analyses

The source function s(t) for t > delay is defined as follows

s(t) = v2 for delay < t < (delay + t1)

s(t) = v1 for (delay + t1) < t < (delay + T )

s(t) = s(t− T ) for (delay + T ) < t

where

T=1/freq T is defined as the period of the waveform

t1=DRATIO*T t1 is the duration in a period of the waveform where the source value is
equal to v2

The source function s(t) for t < delay is defined as follows:

s(t) = s(t+ T ) for 0 < t < delay and OFF_UNTIL_DELAY=NO

s(t) = v1 for 0 < t < delay and OFF_UNTIL_DELAY=YES

The waveform s(t) of a typical rectangular pulse source is shown in the diagram below. For t < delay and
OFF_UNTIL_DELAY=YES, the waveform s(t) is shown in bold dashed line. For t < delay and OFF
_UNTIL_DELAY=NO, the waveform s(t) is shown in heavy gray line.
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3.5 Waveform s(t) of a pulse-wave source

Sinusoidal Sources

The formats for defining independent sinusoidal voltage and current sources are:

Vname n+ n- SIN VOFFSET=voff APEAK=apeak
+ FREQ=freq {TDELAY=tdelay|PDELAY=pdelay}
+ OFF_UNTIL_DELAY={YES|NO} DAMP_COEF=damp_coef
+ [IDLE_IN_POP=YES|NO]

and

Iname n+ n- SIN VOFFSET=voff APEAK=apeak
+ FREQ=freq {TDELAY=tdelay |PDELAY=pdelay}
+ OFF_UNTIL_DELAY={YES|NO} DAMP_COEF=damp_coef
+ [IDLE_IN_POP=YES|NO]

V is the one-character element keyword “V” for independent voltage
sources

I is the one-character element keyword “I” for independent current
sources

name is the individual name of the device

n+ is the name of the positive node, and is a nonnegative integer

n- is the name of the negative node, and is a nonnegative integer

SIN is the three-character keyword “SIN” to signify that this is a sinusoidal
source with possible damping

VOFFSET= is the eight-character keyword “VOFFSET=” representing the DC offset of
the source

voff is a floating-point number assigned as the DC offset value (in volts)
for a voltage source and the DC offset value (in amperes) for a current
source

APEAK= is the six-character keyword “APEAK=” representing the amplitude of the
source at t = tdelay

apeak is a nonnegative floating-point number assigned as volts for a voltage source
and amperes for a current source
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FREQ= is the five-character keyword “FREQ=” representing the frequency of the
source

freq is a positive floating-point number assigned as the frequency of this source
(in hertz)

TDELAY= is the seven-character keyword “TDELAY=” representing the time delay of
the source

tdelay is a floating-point number assigned as the time delay (in seconds)

PDELAY= is the seven-character keyword “PDELAY=” representing the phase delay
of the source

pdelay is a floating-point number assigned as the phase delay (in degrees). The
specification of TDELAY and PDELAY are mutually exclusive

OFF_UNTIL
_DELAY=

is the sixteen-character keyword “OFF_UNTIL_DELAY=”

YES is the three-character keyword “YES”

NO is the two-character keyword “NO”

IDLE_IN_POP= may have values YES or NO. Default is NO. If YES, the source will be
inactive during POP and AC analyses. Inactive means that the source will
hold its t=0 value throughout the analysis. If NO the source will behave
normally during POP and AC analyses

DAMP_COEF= is the ten-character keyword “DAMP_COEF=” representing the damping
coefficient of the source

damp_coef is a floating-point number assigned as the damping coefficient (in 1/sec-
onds)

The source function s(t) for all t is

s(t) = voff + apeak · e−damp_coef·(t−tdelay) · sin(2 · π · freq · (t− tdelay))

The value of tdelay, computed from the value of pdelay (if pdelay is given), is:

tdelay = (pdelay)/(360 ∗ freq).

If OFF_UNTIL_DELAY is assigned a value of YES, then the value of s(t) for t < tdelay is modified to:

s(t) = voff for t < tdelay

The waveform s(t) of a typical sinusoidal source is shown in the diagram below.

For t < delay and OFF_UNTIL_DELAY=YES, the waveform s(t) is shown in bold dashed line. For t <
delay and OFF_UNTIL_DELAY=NO, the waveform s(t) is shown in heavy grey line.
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3.6 Waveform s(t) of a sinusoidal source

Cosinusoidal Source

The formats for independent cosinusoidal voltage and current sources are:

Vname n+ n- COS VOFFSET=voff APEAK=apeak
+ FREQ=freq {TDELAY=tdelay|PDELAY=pdelay}
+ OFF_UNTIL_DELAY={YES|NO}
+ DAMP_COEF=damp_coef
+ [IDLE_IN_POP=YES|NO]

and

Iname n+ n- COS VOFFSET=voff APEAK=apeak
+ FREQ=freq {TDELAY=tdelay|PDELAY=pdelay}
+ OFF_UNTIL_DELAY={YES|NO}
+ DAMP_COEF=damp_coef
+ [IDLE_IN_POP=YES|NO]

where

V is the one-character element keyword “V” for independent voltage
sources

I is the one-character element keyword “I” for independent current
sources

name is the individual name of the device

n+ is the name of the positive node, and is a nonnegative integer

n- is the name of the negative node, and is a nonnegative integer

COS is the three-character keyword “COS” to signify that this is a cosinusoidal
source with possible damping

VOFFSET= is the eight-character keyword “VOFFSET=” representing the DC offset of
the source

voff is a floating-point number assigned as the DC offset value (in volts)
for a voltage source and the DC offset value (in amperes) for a current
source
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APEAK= is the six-character keyword “APEAK=” representing the amplitude of the
source at t = tdelay

apeak is a nonnegative floating-point number assigned as the amplitude (in volts)
for a voltage source and (in amperes) for a current source

FREQ= is the five-character keyword “FREQ=” representing the frequency of this
source

freq is a positive floating-point number assigned as the frequency (in
hertz)

TDELAY= is the seven-character keyword “TDELAY=” representing the time delay of
the source (use of TDELAY and PDELAY are mutually exclusive)

tdelay is a floating-point number assigned as the time delay (in seconds)

PDELAY= is the seven-character keyword “PDELAY=” representing the phase de-
lay of the source (use of TDELAY and PDELAY are mutually exclu-
sive)

pdelay is a floating-point number assigned as the phase delay (in degrees)

OFF_UNTIL
_DELAY=

is the sixteen-character keyword “OFF_UNTIL_DELAY=”

YES is the three-character keyword “YES”

NO is the two-character keyword “NO”

DAMP_COEF= is the ten-character keyword “DAMP_COEF=” representing the damping
coefficient of the source

damp_coef is a floating-point number assigned as the damping coefficient (in 1/sec-
onds)

IDLE_IN_POP= may have values YES or NO. Default is NO. If YES, the source will be
inactive during POP and AC analyses. Inactive means that the source will
hold its t=0 value throughout the analysis. If NO the source will behave
normally during POP and AC analyses

The source function s(t) for all t is

s(t) = voff + apeak · e−damp_coef·(t−tdelay) · cos(2 · π · freq · (t− tdelay)).

The value of tdelay, computed from the value of pdelay (if pdelay is given), is:

tdelay = (pdelay)/(360 ∗ freq)

If OFF_UNTIL_DELAY is assigned a value of YES, then the value of s(t) for t < tdelay is modified to

s(t) = voff for t < tdelay

The waveform s(t) of a typical cosinusoidal source is shown in the diagram below. For t < delay and OFF
_UNTIL_DELAY=YES, the waveform s(t) is shown in bold dashed line. For t < delay and OFF_UNTIL
_DELAY=NO, the waveform s(t) is shown in heavy grey line.
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3.7 Waveform s(t) of a cosinusoidal source

Aperiodic Exponential Pulse Sources

The formats for independent sources with aperiodic exponential pulse waveforms (see waveform diagram
below) are as follows:

For a voltage source:

Vname n+ n- EXP V1=v1 V2=v2
+ DELAY_R=delay_r DELAY_F=delay_f
+ TAU_R=tau_r TAU_F=tau_f
+ [IDLE_IN_POP=YES|NO]

For a current source:

Iname n+ n- EXP V1=v1 V2=v2
+ DELAY_R=delay_r DELAY_F=delay_f
+ TAU_R=tau_r TAU_F=tau_f
+ [IDLE_IN_POP=YES|NO]

where

V is the one-character element keyword “V” for independent voltage
sources

I is the one-character element keyword “I” for independent current
sources

name is the individual name of the device

n+ is the name of the positive node and is a nonnegative integer

n- is the name of the negative node and is a nonnegative integer

EXP is the three-character keyword “EXP” to signify that this is an aperiodic
single-shot exponential pulse source

V1= is the three-character keyword “V1=” representing the quiescent value of
the source

v1 is a floating-point number assigned as the quiescent value (in volts) for a
voltage source and (in amperes) for a current source

V2= is the three-character keyword “V2=” representing the “pulsed” value of
the source
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v2 is a floating-point number assigned as the “pulsed” value (in volts) for a
voltage source and (in amperes) for a current source

DELAY_R= is the eight-character keyword “DELAY_R=” representing the time delay
of the rising edge of the source, that is, the edge of the waveform when it
moves from the quiescent value v1 to the pulsed value v2

delay_r is a nonnegative floating-point number assigned as the time delay of the
rising edge (in seconds)

DELAY_F= is the eight-character keyword “DELAY_F=” representing the time delay
of the falling edge of the source, that is, the edge of the waveform when it
moves from v2 to v1

delay_f is a nonnegative floating-point number assigned as the time delay of the
falling edge (in seconds), and must be larger than delay_r

TAU_R= is the six-character keyword “TAU_R=” representing the time constant of
the rising edge of the source

tau_r is a floating-point number assigned as the value of the time constant of the
rising edge (in seconds)

TAU_F= is the six-character keyword “TAU_F=” representing the time constant of
the falling edge of the source

tau_f is a floating-point number assigned as the value of the time constant of the
falling edge (in seconds)

IDLE_IN_POP= may have values YES or NO. Default is NO. If YES, the source will be
inactive during POP and AC analyses. Inactive means that the source will
hold its t=0 value throughout the analysis. If NO the source will behave
normally during POP and AC analyses

The source function s(t) is defined as follows:

s(t) = v1 for t < delay_r

s(t) = v2 + (v1 − v2).e−(t−delay_r)/tau_r for delay_r < t < delay_f

s(t) = v1 + (s(delay_f) − v1).e− (t− delay_f)/tau_f for delay_f < t

In the case where tau_r is equal to 0, the source function rises instantaneously from

v1 to v2 at t = delay_r

s(t) = v2 for delay_r < t < delay_f

In the case where tau_f is equal to 0, the source function falls instantaneously from

v2 to v1 at t = delay_f

s(t) = v1 for delay_f < t

The waveform s(t) of a typical aperiodic exponential pulse source is shown in the diagram below.
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3.8 Waveform s(t) of an exponential pulse source

Aperiodic Piecewise-Linear Sources

An aperiodic piecewise-linear source has its source function s(t) defined in terms of a finite number of
linear segments. See diagram below for a typical example. The formats for independent aperiodic
piecewise linear sources are:

Vname n+ n- PWL NSEG=k
+ X0=x0 Y0=y0 ... XK=xk YK=yk

and

Iname n+ n- PWL NSEG=k
+ X0=x0 Y0=y0 ... XK=xk YK=yk

where

V is the one-character element keyword “V” for independent voltage
sources

I is the one-character element keyword “I” for independent current
sources

name is the individual name of the device

n+ is the name of the positive node, and is a nonnegative integer

n- is the name of the negative node, and is a nonnegative integer

PWL is the three-character keyword “PWL” to signify that this is an aperiodic
piecewise-linear source

NSEG= is the five-character keyword “NSEG=” representing the number of linear
segments for this source

k is an integer defining the number of linear segments and can take on values
from 2 to 253, inclusively

X0= is the keyword “X0=” representing the time (or x axis) coordinate of the
start of the first linear segment

x0 is a floating-point number which defines the value of X0 in seconds

Y0= is the three-character keyword “Y0=” representing the voltage or current (y
axis) coordinate of the start of the first linear segment

y0 is a floating-point number which describes the value of Y0 in volts for a
voltage source and in amperes for a current source
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X1= is the keyword “X1=” representing the time (or x axis) coordinate of the end
of the first linear segment and the start of the second linear segment

x1 is a floating-point number which describes the value of X1 in seconds. x1
is larger than or equal to x0

Y1= is the keyword “Y1=” representing the voltage or current (y axis) coordi-
nate of the end of the first linear segment and the start of the second linear
segment

y1 is a floating-point number which describes the value of Y1 in volts for a
voltage source, and in amperes for a current source

X2= is the keyword “X2=” representing the time (or x axis) coordinate of the end
of the second linear segment and the start of the third linear segment

x2 is a floating-point number which defines the value of X2 in seconds. x2 is
larger than or equal to x1

Y2= is the keyword “Y2=” representing the voltage or current (y axis) coordinate
of the end of the second linear segment and the start of the third linear
segment

y2 is a floating-point number which defines the value of Y2 in volts for a volt-
age source, and in amperes for a current source, and so on

The x’s and the y’s form coordinate pairs in the s(t) versus t plane. If the source is described by k
piecewise-linear segments, then (k + 1) pairs of coordinates are required to define the source, from
(x0, y0) up to (xk, yk). The line segment formed by drawing a straight line from (x0, y0) to (x1, y1) is
the first segment describing the source. The line segment formed by drawing a straight line from (x1, y1)
to (x2, y2) is the second segment describing the source.

The source value s(t) for t < x0 is set to s(t) = y0. The source value s(t) for t > xk is set to s(t) = yk.

An example of the waveform s(t) of a piecewise-linear source is illustrated in the diagram below.

3.9 Example of the waveform s(t) of a typical piecewise-linear source

Mutual Inductances

The format for mutual inductance is:

M-Lname1-Lname2 value

where

M is the one-character element keyword “M” for mutual inductors

- is the hyphen character (‘-’)

Lname1 is the device name of a linear inductor defined in the current circuit
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Lname2 is the device name of another linear inductor defined in the current circuit.
Lname1 and Lname2 must refer to different inductors

value is a floating-point number assigned as the mutual inductance between the
two linear inductors

For the schematic shown below, the two mutual inductors are defined in the input file as

L1 3 1 200U IC=50M
L2 4 2 500U IC=0
LA 101 100 1M IC=-30U
LB 210 17 2M IC=10U
M-L1-L2 15U
M-LA-LB -30U

The mutual inductance between two linear inductors is positive if the polarity dots appear on the positive
nodes of both inductors or if the polarity dots appear on the negative nodes of both inductors. In the
example shown below, the mutual inductance between inductors LA and LB is negative because the
polarity dot is located at the positive node of LA but the polarity dot is located at the negative node of LB.

3.10 Examples of the definitions for mutual inductances
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Linear Voltage-Controlled Sources

The formats for voltage-controlled sources are:

Ename n+ n- nc+ nc- value

Gname n+ n- nc+ nc- value

Ename n+ n- cname value

Gname n+ n- cname value

where

E is the one-character element keyword “E” for linear voltage-controlled volt-
age sources

G is the one-character element keyword “G” for linear voltage-controlled cur-
rent sources

name is the individual name of the device

n+ is the name of the positive node of the controlled source, and is a nonnega-
tive integer

n- is the name of the negative node of the controlled source, and is a nonneg-
ative integer

nc+ is the name of the positive controlling node in the same circuit where the
linear voltage-controlled source is being defined

nc- is the name of the negative controlling node in the same circuit where the
linear voltage-controlled source is being defined

cname is the name of a controlling device in the same circuit where the linear
voltage-controlled source is being defined

value is a floating-point number assigned as the proportionality constant for this
controlled source

In the first format, the value of the controlled source is given by

s = value ∗ v(nc+, nc−)

where v(nc+, nc−) represents the voltage of node nc+ with respect to node nc-, and s is the controlled
voltage for a controlled voltage source and the controlled current for a controlled current source. In the
second format, the value of the controlled source is given by

s = value ∗ v(cname)

where v(cname) represents the branch voltage across the positive and negative nodes of the controlling
device named “cname”.

Linear Current-Controlled Sources

The formats for current-controlled sources are:

Hname n+ n- cname value

or

Fname n+ n- cname value
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where
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H is the one-character element keyword “H” for linear current-controlled volt-
age sources

F is the one-character element keyword “F” for linear current-controlled cur-
rent sources

name is the individual name of the device

n+ is the name of the positive node of the controlled source and is a nonnega-
tive integer

n- is the name of the negative node of the controlled source and is a nonnega-
tive integer

cname is the name of a controlling device and is not restricted to a voltage
source

value is a floating-point number assigned as the proportionality constant for this
controlled source

The value of the controlled source is given by

s = value ∗ i(cname)

where i(cname) represents the branch current through the controlling device named “cname”.

Ideal Transformers

The format for ideal transformer differs from the typical format defined in Device Statement Format:

!Tname N_WIND=k n1+ n1- N1=t1 ...
+ nk+ nk- Nk=tk

where

!T is the two-character element keyword “!T” for ideal transformers

name is the individual name of the device

N_WIND= is the seven-character keyword “N_WIND=” representing the number of
windings in the transformer

k is a positive integer assigned as the number of windings and can assume
any integral value from 2 to 255, inclusively

n1+ is a nonnegative integer to represent the node name of the “dotted” terminal
of winding 1

n1- is a nonnegative integer to represent the node name of the “undotted” ter-
minal of winding 1

N1= is the three-character keyword “N1=” representing the number of turns in
winding 1

t1 is a positive floating-point number assigned as the number of turns in wind-
ing 1

For a k-winding transformer, the node names of each winding and the number of turns in each winding
must be specified in this device statement.

Simple Switches

The formats for simple switches are:
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Sname n+ n- nc+ nc- mname IC={CLOSE|OPEN}

Sname n+ n- cname mname IC={CLOSE|OPEN}

where

S is the one-character element keyword “S” for simple switches

name is the individual name of the device

n+ is the name of the positive node of the simple switch and is a nonnegative
integer

n- is the name of the negative node of the simple switch and is a nonnegative
integer

nc+ is the name of the positive controlling node

nc- is the name of the negative controlling node

cname is the name of a controlling device

mname is the name of a compatible switch model

IC= is the three-character keyword “IC=” representing the initial condition of
the simple switch

OPEN is the four-character keyword “OPEN”, meaning the simple switch is ini-
tialized to the open state

CLOSE is the five-character keyword “CLOSE”, meaning the simple switch is ini-
tialized to the closed state (use of OPEN and CLOSE are mutually exclu-
sive)

The parameters describing the switch are defined in a model statement. Refer to Simple Switch Models for
the explanation of the model statements associated with simple switches.

In SIMPLIS, both the voltage-controlled and the current-controlled switches are modeled by the simple S
switch. If the switch model named “mname” has a model type of VCSW, the switch is considered to be
voltage controlled. If the model type of the switch model is ICSW, the switch is considered to be current
controlled.

The initial condition provided for a simple switch is only used by SIMPLIS as a suggestion. If the circuit
condition on the controlling variable dictates a different initial condition, SIMPLIS automatically
overrides the given initial condition with the correct initial condition.

Simple Transistor Switches

The formats for simple transistor switches are:

Qname n+ n- nc+ nc- mname IC={CLOSE|OPEN}

Qname n+ n- cname mname IC={CLOSE|OPEN}

where

Q is the one-character element keyword “Q” for simple transistor
switches

name is the individual name of the device

n+ is the name of the positive node of the simple transistor switch and is a
nonnegative integer

n- is the name of the negative node of the simple transistor switch and is a
nonnegative integer
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nc+ is the name of the positive controlling node

nc- is the name of the negative controlling node

cname is the name of a controlling device

mname is the name of a compatible transistor switch model

IC= is the three-character keyword “IC=” representing the initial condition of
the simple transistor switch

OPEN is the four-character keyword “OPEN”, meaning the simple transistor
switch is initialized to the open state

CLOSE is the five-character keyword “CLOSE”, meaning the simple transistor
switch is initialized to the closed state

The parameters describing the transistor switch are defined in a model statement. Refer to Simple Switch
Models for the explanation of the model statements associated with simple transistor switches.

There are four model types compatible with simple transistor switches. These are:

VCQPOS

VCQNEG

ICQPOS

ICQNEG

Model types VCQPOS and VCQNEG correspond to voltage-controlled transistor switches. Model types
ICQPOS and ICQNEG correspond to current-controlled transistor switches.

Similar to the initial condition given to a simple switch, the initial condition given to a simple transistor
switch is used by SIMPLIS only as a suggestion. Giving a correct initialization, however, eliminates the
computation time required by SIMPLIS to search for the correct initial state, and thus leads to a faster
simulation.

Piecewise Linear Resistors

The format for piecewise-linear resistor is:

!Rname n+ n- mname IC=seg_num

where

!R is the two-character element keyword “!R” for piecewise-linear resis-
tors

name is the individual name of the device

n+ is the name of the positive node and is a nonnegative integer

n- is the name of the negative node and is a nonnegative integer

mname is the name of a model compatible with a piecewise-linear resistor

IC= is the three-character keyword “IC=” representing the initial segment of
operation for the piecewise-linear resistor

seg_num is a positive integer assigned as the initial segment of operation for the
piecewise-linear resistor. It must be larger than or equal to 1, and less than
or equal to the number of segments defined in the model.

The parameters describing a piecewise-linear resistor are defined in a model statement. Refer to
Piecewise-Linear Resistor Models for the explanation of the model statements associated with the
piecewise-linear resistors.
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There are two types of models that are compatible with piecewise-linear resistors: VPWLR for
voltage-defined piecewise-linear resistors and IPWLR for current-defined piecewise-linear resistors.

The initial segment of operation is used by SIMPLIS as a suggestion. SIMPLIS automatically computes
the circuit voltages and currents to determine the correct initial segment of operation.

Piecewise-Linear Inductors and Capacitors

The formats for piecewise-linear inductors and piecewise-linear capacitors are:

!Lname n+ n- mname IC=init_cond

!Cname n+ n- mname IC=init_cond

where

!L is the two-character element keyword “!L” for piecewise-linear induc-
tors

!C is the two-character element keyword “!C” for piecewise-linear capaci-
tors

name is the individual name of the device

n+ is the name of the positive node and is a nonnegative integer

n- is the name of the negative node and is a nonnegative integer

mname is the name of a model compatible with a piecewise-linear inductor or a
piecewise-linear capacitor

IC= is the three-character keyword “IC=” representing the initial condi-
tion

init_cond is the value of initial condition. It is the initial current (in amperes) in the
case of a piecewise-linear inductor and the initial voltage (in volts) in the
case of a piecewise-linear capacitor.

The parameters describing the piecewise-linear inductors and capacitors are defined in a model statement.
Refer to Piecewise-Linear Inductor and Capacitor Models for the explanation of the model statements
associated with these two devices. For a piecewise-linear inductor, the only acceptable model type is
PWLL. For a piecewise-linear capacitor, the only acceptable model type is PWLC.

Simple Logic Gates

The format for a simple logic gate is:

!Dname no1 no2 ... nref ni1 ni2 ... mname IC={0|1}

where

!D is the two-character element keyword “!D” for simple logic gates

name is the individual name of the device

no1 is a nonnegative integer representing the name of the first output node of
the logic gate

no2 is a nonnegative integer representing the name of the second output node of
the logic gate if there is more than one output
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nref is a nonnegative integer representing the name of the reference node. The
logic state(s) of the output(s) of a simple logic gate are defined in terms of
the voltage(s) of the output node(s) with respect to the reference node. The
logic state(s) of the input(s) of a simple logic gate are defined in terms of
the voltage(s) of the input node(s) with respect to the reference node

ni1 is a nonnegative integer representing the name of the first input node of the
logic gate

ni2 is a nonnegative integer representing the name of the second input node of
the logic gate if there are more than one input

mname is the name of a model compatible with a simple logic gate

IC= is the three-character keyword “IC=” representing the initial output state of
the logic gate

0 is the integer 0 to indicate that the initial output state of this gate is logic
0

1 is the integer 1 to indicate that the initial output state of this gate is logic 1
(use of the 0 and 1 are mutually exclusive)

The parameters describing the simple logic gates are defined in a model statement. Refer to Simple Logic
Device Models for the explanation of the model statements associated with simple logic gates. The initial
output state of the logic gate is used by SIMPLIS as a suggestion.

The model types and the associated simple logic gates are summarized in the table below.

SIMPLIS Digital Model Types

Model Type Gate Type Num. Inputs Num. Outputs

INV Inverter 1 1

COMP Comparator 2 1

XOR Exclusive OR gate 2 1

ORk k-input OR gate 2 ≤ k ≤ 9 k 1

NORk k-input NOR gate 2 ≤ k ≤ 9 k 1

ANDk k-input AND gate 2 ≤ k ≤ 9 k 1

NANDk k-input NANDk gate 2 ≤ k ≤ 9 k 1

SRFF Set-Reset Flip Flop 2 2

CLK_SRFF Clocked Set-Reset Flip Flop 3 2

CLK_JKFF Clocked JK Flip Flop 3 2

CLK_DFF Clocked D Flip Flop 2 2

CLK_TFF Clocked Toggle Flip Flop 2 2

LATCH Latch 2 1

Subcircuit Calls / Instantiation

The format for a subcircuit call is:

Xname n1 n2 ... nn sname

where
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X is the one-character element keyword “X” for the subcircuit call/instantia-
tion

name is the individual name of the device

n1 is a nonnegative integer to represent the name of the first node of this de-
vice

n2 is a nonnegative integer to represent the name of the second node of this
device

nn is the nonnegative integer representing the nth node of this device, and sname is the name of a
subcircuit definition compatible with this device. Through the use of the subcircuit feature, one can model
an n-terminal physical device by building an n-terminal subcircuit made up of the simple basic devices
outlined in this section. The subcircuit feature is further explained in See Subcircuit Definition.
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Chapter 4

Model Statements

4.1 Overview

For a simple device, the number of parameters required to model the device is relatively small and the
parameters can be easily blended with the device statement. For example, the resistance, the inductance,
and the capacitance of a linear resistor, inductor, and capacitor, respectively, are all defined in the device
statements. For devices such as simple switches, piecewise-linear elements, and simple logic gates, a large
number of parameters is needed to describe the device performance. In such cases, the model statements
provide a convenient and organized way to define the model parameters.

There are two additional advantages in using the model statements. Quite often, several devices in the
system being studied may have the same model parameters. In such cases, one single model statement can
provide the model parameters for all of the devices of the same type. Another benefit of this arrangement is
when several devices are described by the same device model, then the model characteristics of all of these
devices can be altered at the same location by modifying the model statement which is common to all.

A typical model statement can be represented by the following example statement:

.MODEL mname mtype param param ...

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit Names.
A model name must be unique within a general circuit. If a name is used as
a model name in a general circuit, it cannot be used as a subcircuit name in
the same general circuit and vice versa.

mtype is a keyword which stands for one of the model types supported by SIM-
PLIS. The list of device models recognized by SIMPLIS is shown in the
table below.

param is a parameter assignment in the form illustrated in Parameter Assign-
ments.

Device Model Types Used by SIMPLIS

Model Type Description

VCSW Voltage-Controlled Simple Switch

ICSW Current-Controlled Simple Switch
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Model Type Description

VCQPOS
VCQNEG

Voltage-Controlled Simple Transistor Switch

ICQPOS IC-
QNEG

Current-Controlled Simple Transistor Switch

VPWLR IP-
WLR

Piecewise-Linear Resistor

PWLL Piecewise-Linear Inductor

PWLC Piecewise-Linear Capacitor

INV Simple Logic Gate, Inverter

COMP Simple Logic Gate, Comparator

XOR Simple Logic Gate, Exclusive OR

ORk Simple Logic Gate, k-input OR, where k is an integer, 2 ≤ k ≤ 9

NORk Simple Logic Gate, k-input NOR, where k is an integer, 2 ≤ k ≤ 9

ANDk Simple Logic Gate, k-input AND, where k is an integer, 2 ≤ k ≤ 9

NANDk Simple Logic Gate, k-input NAND, where k is an integer, 2 ≤ k ≤ 9

SRFF Simple Logic Gate, Set-Reset Flip Flop

CLK_SRFF Clocked Logic Gate, Clocked Set-Reset Flip Flop

CLK_JKFF Clocked Logic Gate, Clocked JK Flip Flop

CLK_DFF Clocked Logic Gate, Clocked D Flip Flop

CLK_TFF Clocked Logic Gate, Clocked Toggle Flip Flop

LATCH Latch

The keyword “.MODEL”, the model name, and the model type must be entered in the exact order as
indicated. Following these three fields are a number of fields each made up of a parameter assignment.
The actual number of parameters assignments depends on the model type. The number of parameter
assignments must be exactly equal to what is required by the model type. Extra or missing parameter
assignments will lead to error messages. Within the set of fields for the parameter assignments, however,
the fields can appear in any order of sequence. For example, the following two statements are both
acceptable:

.MODEL S1 VCSW TH=2 HYSTWD=2U RON=10m
+ ROFF=10MEG LOGIC=POS

or

.MODEL S1 VCSW RON=10m ROFF=10MEG
+ TH=2 HYSTWD=2U LOGIC=POS

Parameter assignments in SIMPLIS do not assume default values. Therefore, each required parameter
must be assigned a proper value in the .MODEL statement.

4.2 Device Models Used in Simplis

Piecewise-Linear Resistor Models

There are two acceptable model types for piecewise-linear resistors:

1. A voltage-defined piecewise-linear resistor, VPWLR
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2. A current-defined piecewise-linear resistor, IPWLR

The formats for the model statements associated with these two model types are:

.MODEL mname mtype NSEG=k X0=x0 Y0=y0
+ X1=x1 Y1=y1 X2=x2 Y2=y2 ... Xk=xk Yk=yk

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

mtype is a five-character keyword equal to either “VPWLR” or “IPWLR”

NSEG= is the five-character keyword “NSEG=” representing the number of linear
segments in the resistor model

k is an integer which defines the number of linear segments for this
piecewise-linear resistor and can take on values from 2 to 255, inclu-
sively

X0= is the keyword “X0=” representing the voltage (x axis) coordinate of the
beginning of the first linear segment of the piece-wise linear resistor

x0 is a floating-point number which defines the value of X0 in volts.

Y0= is the keyword “Y0=” representing the current (y axis) coordinate of the
beginning of the first linear segment of the piece-wise linear resistor

y0 is a floating-point number that defines the value of Y0 in amperes, so that
the straight line passing through (x0, y0) and terminating on the break
point (x1, y1) forms the first segment of the piecewise-linear character-
istic

X1= is the keyword “X1=” representing the voltage (x axis) coordinate of the
end of the first linear segment of the piece-wise linear resistor and the be-
ginning of the second linear segment of the resistor

x1 is a floating-point number which defines the value of X1 in volts.

Y1= is the keyword “Y1=” representing the current (y axis) coordinate of the end
of the first linear segment of the piece-wise linear resistor and the beginning
of the second linear segment of the resistor

y1 is a floating-point number which defines the value of Y1 in amperes.

X2= is the keyword “X2=” representing the voltage (x axis) coordinate of the
end of the second linear segment of the piece-wise linear resistor and the
beginning of the third linear segment of the resistor

x2 is a floating-point number which defines the value of X2 in volts.

Y2= is the keyword “Y2=” representing the current (y axis) coordinate of the
end of the second linear segment of the piece-wise linear resistor and the
beginning of the third linear segment of the resistor

y2 is a floating-point number which defines the value of Y2 in amperes, so
that the straight line starting at the break point (x1, y1) and terminating at
the break point (x2, y2) forms the second segment of the piecewise-linear
characteristic, and so on

Xk= is the keyword “Xk=” representing the voltage (x axis) coordinate of the
end of the kth (last) linear segment of the piece-wise linear resistor

xk is a floating-point number which defines the value of Xk in volts.

Yk= is the keyword “Yk=” representing the current (y axis) coordinate of the
end of the kth (last) linear segment of the piece-wise linear resistor
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yk is a floating-point number which defines the value of Yk in amperes, so that the straight line starting at
the break point (xk−1, yk−1) and passing through the point (xk, yk) forms the last segment of the
piecewise-linear characteristic.

The slope of each line segment on the v-i plane is the differential conductance in Siemens for the device.
The small-signal resistance is then the reciprocal of the differential conductance.

VPWLR -Type Model

The VPWLR model type is used for piecewise-linear v-i characteristics which are voltage-defined. In
other words, the value of current is uniquely defined for every value of voltage. In such a case, the
voltage-current coordinates at the points of definition of the v-i characteristics must satisfy the following
two restrictions:

1. Values of the voltages must be entered in a strictly ascending order: x0 < x1 < x2 < ... < xk

2. The slopes of the first and last segments must be positive: y0 < y1 and yk − 1 < yk

Other than the first and the last segments, each intermediate segment j has two break points and is defined
for voltages in the range of xj − 1 ≤ v ≤ xj. The first segment has one break point at (x1, y1) and is
defined for voltages in the range of v ≤ x1. The last segment has one break point at (xk − 1, yk − 1) and
is defined for voltages in the range of xk − 1 ≤ v. As such, (x0, y0) and (xk, yk) are used to define the
slopes of the first and last segments instead of being used to define their break points.

As an example, the diagram below shows the v-i characteristics of an ordinary pn-junction diode and that
of a tunnel diode. It is apparent from the diagram that the characteristics of these two devices satisfy the
voltage-defined requirement and each of these two devices can be modeled by a VPWLR-type
piecewise-linear resistor.

4.1 The v-i characteristics of (a) an ordinary pn-junction diode and (b) a tunnel diode.
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IPWLR -Type Model

The IPWLR model type is reserved for piecewise-linear v-i characteristics which are current-defined in the
sense that the value of voltage is uniquely defined for every value of current. In such a case, the
voltage-current coordinates at the points of definition of the v-i characteristics must satisfy the following
restrictions:

1. Values of the currents must be entered in a strictly ascending order: y0 < y1 < y2... < yk

2. The slopes of the first and last segments must be positive: x0 < x1 and xk − 1 < xk

Other than the first and the last segments, each intermediate segment j has two break points and is defined
for currents in the range of yj − 1 ≤ i ≤ yj. The first segment has one break point at (x1, y1) and is
defined for currents in the range of i ≤ y1. The last segment has one break point at (xj − 1, yj − 1) and is
defined for currents in the range of i yk − 1. The two points (x0, y0) and (xk, yk) are used in conjunction
with (x1, y1) and (xk − 1, yk − 1) to define the slopes of the first and the last segments of the
characteristics.

For example, the v-i characteristics of the ordinary pn-junction diode shown in diagram 4.1(a) above and
the v-i characteristics shown in diagram 4.2 can both be considered to behave as nonlinear current-defined
resistors. Therefore, each can be approximated by an IPWLR-type model. On the other hand, the tunnel
diode characteristics shown in diagram 4.1(b) cannot be modeled by an IPWLR-type model since the
values for the branch voltage are not uniquely defined for every value of current. Similarly, the v-i
characteristics shown in 4.2 cannot be modeled by a VPLWR-type model.

4.2 Example of a type of v-i characteristics that can be described as a current-defined
resistor.

Piecewise-Linear Inductor and Capacitor Models

The model statements for piecewise-linear inductors and capacitors are very similar to those for the
piecewise-linear resistors. In the case of a piecewise-linear resistor, its characteristics are defined in terms
of points on the current vs voltage plane. In the case of a piecewise-linear inductor, the characteristics are
defined in terms of points on the flux-linkage vs. current plane. In the case of a piecewise-linear capacitor,
the characteristics are defined in terms of points on the charge vs voltage plane.

The model statement format for a piecewise-linear inductor or capacitor is:

.MODEL mname mtype NSEG=k X0=x0 Y0=y0
+ X1=x1 Y1=y1 X2=x2 Y2=y2 ... Xk=xk Yk=yk
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where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names andSubcircuit
Names

mtype is a four-character keyword equal to “PWLL” or “PWLC”, which stand
for the model types for a piecewise-linear inductor or capacitor, respec-
tively

NSEG= is the five-character keyword “NSEG=” representing the number of linear
segments in this device model

k is an integer defining the number of linear segments and can take on values
from 2 to 255, inclusively

X0= is the keyword “X0=” representing the x axis coordinate of the beginning
of the first linear segment of the device model

x0 is a floating-point number which defines the value of X0 and has units of
amperes for a PWL inductor and volts for a PWL capacitor.

Y0= is the keyword “Y0=” representing the y axis coordinate of the beginning
of the first linear segment of the device model

y0 is a floating-point number which defines the value of Y0 and has units of
weber-turns for a PWL inductor and coulombs for a PWL capacitor

X1= is the keyword “X1=” representing the x axis coordinate of the end of the
first linear segment of the device model and the beginning of the second
linear segment of the device model

x1 is a floating-point number which defines the value of X1 and has the same
units indicated for x0

Y1= is the keyword “Y1=” representing the y axis coordinate of the end of the
first linear segment of the device model and the beginning of the second
linear segment of the device model, so that the straight line passing through
(x0, y0) and terminating on the break point (x1, y1) forms the first segment
of the piecewise-linear characteristic

y1 is a floating-point number which defines the value of Y1

X2= is the keyword “X2=” representing the x axis coordinate of the end of the
second linear segment of the device model and the beginning of the third
linear segment of the device model

x2 is a floating-point number which defines the value of X2.

Y2= is the keyword “Y2=” representing the y axis coordinate of the end of the
second linear segment of the device model and the beginning of the third
linear segment of the device model, so that the straight line passing through
(x1, y1) and terminating on the break point (x2, y2) forms the second seg-
ment of the piecewise-linear characteristic

y2 is a floating-point number which defines the value of Y2, and so on

Xk= is the keyword “Xk=” representing the x axis coordinate of the end of the
last linear segment of the device model

xk is a floating-point number which defines the value of Xk.

Yk= is the keyword “Yk=” representing the y axis coordinate of the end of the
last linear segment of the device model, so that the straight line starting at
the break point (xk−1, yk−1) and passing through the point (xk, yk) forms
the last segment of the piecewise-linear characteristic, and

yk is a floating-point number which defines the value of Yk.
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For a PWL inductor, the slope of each line segment on the flux-linkage vs current plane is the differential
inductance of the device in Henries. For a PWL capacitor, the slope of each line segment on the charge vs
voltage plane is the differential capacitance of the device in Farads. To ensure that the differential
inductance or differential capacitance is positive to reflect the characteristics of realistic devices, the
following additional restrictions are placed on the values of the coordinate pairs:

x0 < x1 < x2 < ... < xk

y0 < y1 < y2 < ... < yk

Simple Switch Models

SIMPLIS accepts two types of simple switch models:

1. model type VCSW for a voltage-controlled switch, and

2. model type ICSW for a current-controlled switch.

The formats for both of these two model types are:

.MODEL mname mtype RON=ron ROFF=roff
+ TH=threshold HYSTWD=hystwd LOGIC={POS|NEG}

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

mtype is a four-character keyword equal to either “VCSW” or “ICSW”, indicating
whether the switch is voltage-controlled or current-controlled

RON= is the four-character keyword “RON=” representing the resistance in ohms
of the switch when it is in the closed, or on, state

ron is a positive floating-point number which defines the resistance in ohms of
the switch when it is in the closed, or on, state

ROFF= is the five-character keyword “ROFF=” representing the leakage resistance
in ohms of the switch when it is in the open state

roff is a positive floating-point number which defines the leakage resistance of
the switch in ohms when it is at the open state

TH= is the three-character keyword “TH=” representing the threshold value of
the controlling signal. Together with HYSTWD, it determines the values at
which the state of the switch will be changed from an open state to a closed
state and vice versa

threshold is a floating-point number which defines the threshold value of the con-
trolling signal and is measured in volts for a voltage-controlled switch and
measured in amperes for a current-controlled switch

HYSTWD= is the seven-character keyword “HYSTWD=” representing the hysteresis
width of the controlling signal

hystwd is a positive floating-point number which defines the hysteresis width of the
controlling signal and has the same unit of measurement as that of thresh-
old.

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character string “POS”

NEG is the three-character string “NEG”.
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If the model type is VCSW, the controlling signal cs(t) for the simple switch is the voltage of a pair of
controlling nodes or the branch voltage of a controlling device. If the model type is ICSW, the controlling
signal cs(t) for the simple switch is the branch current of a controlling device.

The diagram below defines the state of the simple switch, under two operating modes. If LOGIC is
assigned the value POS, the switching of the simple switch is defined by (a). If LOGIC is assigned the
value NEG, the switching logic is reversed, and the state of the simple switch is then defined by (b).

When a simple switch is in the closed state, it is modeled by a linear resistor having a resistance equal to
ron between its positive node and negative node. When the simple switch is in the open state, the
resistance of the linear resistor changes to roff.

4.3 State diagram of the simple switch when the parameter LOGIC is assigned a value of
(a) POS or (b) NEG.

Simple Transistor Switch Models

There are four simple transistor models, composed of:

1. a set of two voltage-controlled models, designated as VCQPOS and VCQNEG;

2. a set of two current-controlled models, designated as ICQPOS and ICQNEG.

The formats for these four model types are:

.MODEL mname mtype VSAT=vsat RSAT=rsat
+ ROFF=roff GAIN=gain TH=threshold
+ HYSTWD=hystwd LOGIC={POS|NEG} LEVEL={1|2}

where
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.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

mtype is a six-character keyword equal to one of the following keywords: “VCQ-
POS”, “VCQNEG”, “ICQPOS”, and “ICQNEG”

VSAT= is the five-character keyword “VSAT=”

vsat is a floating-point number which defines the saturation voltage of the tran-
sistor switch in volts. It is the voltage across the transistor switch when
it is saturated and the current through it is negligibly small. It is a posi-
tive number for VCQPOS-type and ICQPOS-type transistor switches and
it is a negative number for VCQNEG-type and ICQNEG-type transistor
switches,

RSAT= is the five-character keyword “RSAT=”

rsat is a positive number which defines the saturation resistance in ohms of the
transistor switch

ROFF= is the five-character keyword “ROFF=”

roff is a positive number which defines the leakage resistance of the switch in
ohms when it is at the open state. It must be larger than rsat

GAIN= is the five-character keyword “GAIN=”

gain is a positive floating-point number which defines the gain of the transistor
switch when the parameter LEVEL is assigned a value above 1. Its value is
ignored when LEVEL is assigned a value of 1

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the con-
trolling signal. Together with hystwd, it determines the values at which
the transistor switch will be changed from an OPEN state to a CLOSE
state and vice versa. It is measured in volts for VCQPOS- and VCQNEG-
type switches and measured in amperes for ICQPOS- and ICQNEG-type
switches

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
controlling signal. It has the same unit of measurement as that of thresh-
old

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”,

LEVEL= is the six-character keyword “LEVEL=”

1 is the integer 1

2 is the integer 2

If the model type is VCQPOS or VCQNEG, the controlling signal cs(t) for the simple transistor switch is
the voltage of a pair of controlling nodes or the branch voltage of a controlling device. If the model type is
ICQPOS or ICQNEG, the controlling signal cs(t) for the simple transistor switch is the branch current of a
controlling device.

For model types VCQPOS and ICQPOS, the voltage across the transistor switch, measured as the voltage
of the positive node with respect to the voltage of the negative node, assumes nonnegative values under
normal operation like an NPN bipolar transistor and an N-channel MOSFET. For model types VCQNEG
and ICQNEG, the voltage across the transistor switch, measured as the voltage of the positive node with
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respect to the voltage of the negative node, assumes non positive values under normal operation like a PNP
bipolar transistor and a P-channel MOSFET.

Models for Simple Transistor Switches for LEVEL=1

When a simple transistor switch is modeled with the LEVEL parameter set to 1, it can assume either an
open or a closed state. The switching diagram in 4.3 (a) applies when LOGIC is set to POS while the
switching diagram in 4.3 (b) applies when LOGIC is set to NEG.

The only difference between a simple switch and a simple transistor switch with LEVEL set to 1 is the
model of the closed state. When a simple transistor switch with LEVEL set to 1 is in the closed state, it is
modeled by a linear resistor with the value rsat in series with a constant voltage source with the value vsat.
When the simple transistor switch is in the open state, it is modeled by a resistor with the value roff. The
block diagram and the V-I characteristic of the model are shown in Figure 4.4. The circuit element model
of the simple transistor switch with LEVEL set to 1 for the closed and open states are shown in diagram
4.4 below.

4.4 Model for the simple transistor switch: (a) Simple transistor switch controlled by a
control signal cs(t), (b) the i Q vs v Q characteristic of the simple POS-type transistor
switch, and (c) the i Q vs v Q characteristic of the simple NEG-type transistor switch.
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4.5 Model for the simple transistor switch: (a) model of the simple transistor switch for
LEVEL=1 when it is in a closed state, and (b) model of the simple transistor switch for
LEVEL=1 when it is in an open state.

If a physical transistor is being driven to act like a switch and detailed waveforms of the voltage across the
transistor and the current through the transistor are not critically important, it is recommended that such a
transistor be modeled by a simple transistor switch with the parameter LEVEL set to 1 since the
simulation is faster when a transistor switch has LEVEL set to 1.

When a simple transistor switch is modeled with the LEVEL parameter set to 1, the value of the GAIN
parameter has no effect on the modeling. In addition, the direction of current flow through the transistor
switch is not restricted and the device behaves more like a controlled switch than a physical transistor.

Models for Simple Transistor Switches for LEVEL=2

When a simple transistor switch is modeled with the LEVEL parameter set to 2, it still assumes either an
open state or a closed state. The switching diagram in 4.3(a) still applies when LOGIC is set to POS while
the switching diagram in 4.3 (b) still applies when LOGIC is set to NEG.

When the LEVEL parameter is set to 2, the simple transistor is still modeled by a resistor with a resistance
equal to roff when it is in the open state. When the simple transistor switch is in the closed state, additional
secondary states are provided for the simple transistor, allowing the modeling of a physical transistor at
operating areas where both the voltage across and the current through the transistor are simultaneously
substantial. For bipolar transistors, such operating areas are collectively called the active region. For the
simple transistor switch the individual states are called ACTIVE, SATURATE, and REV_BIASED, to
stand for active region, saturation, and reversed-biased, as indicated in 4.6 . SIMPLIS internally computes
the voltage across and the current through the simple transistor switch to determine the correct secondary
state at which the transistor switch should operate.
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4.6 Model for the simple transistor switch for LEVEL=2. (a) A simple transistor switch
controlled by a control signal cs(t), (b) The i Q vs v Q characteristics of a VCQPOS-type
or ICQPOS-type transistor switch, (c) The i Q vs v Q characteristic of a VCQNEG-type
or ICQNEG-type transistor switch.

When the secondary state of a simple transistor switch is equal to ACTIVE, it is modeled by a parallel
combination of a linear resistor with a resistance equal to roff and a controlled-current source ci(t) as
indicated in 4.7(a). The current ci(t) of the controlled-current source is defined by the following equations
if LOGIC is set to POS:

ci(t) = gain * [cs(t) - (threshold - hystwd/2)]

for VCQPOS-type transistor switches and
for ICQPOS-type transistor switches

AND

ci(t) = - gain * [ cs(t) - (threshold - hystwd/2) ]

for VCQNEG-type transistor switches and
for ICQNEG-type transistor switches.

On the other hand, the current ci(t) of the controlled-current source is defined by the following equations if
LOGIC is set to NEG:

ci(t) = - gain * [ cs(t) - (threshold + hystwd/2) ]

for VCQPOS-type transistor switches and
for ICQPOS-type transistor switches, and

AND

ci(t) = gain * [ cs(t) - (threshold + hystwd/2) ]

for VCQNEG-type transistor switches and
for ICQNEG-type transistor switches.
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For example, an NPN transistor can be modeled by a piecewise-linear resistor to represent the base-emitter
characteristics and an ICQPOS-type simple transistor switch with LEVEL and LOGIC set to 2 and POS,
respectively, to represent the collector-emitter characteristics. Similarly, the collector-emitter
characteristics of a PNP transistor can be modeled by an ICQNEG-type transistor switch with LEVEL and
LOGIC set to 2 and NEG, respectively.

When the secondary state of a simple transistor switch is equal to SATURATE, it is modeled by the small
network as shown in 4.7(b), which comprises a linear resistor with a resistance equal to rsat in series with
a voltage source with source value vsat. When the secondary state of a simple transistor switch is equal to
REV_BIASED, it is modeled by a large resistor with resistance equal to roff as shown in 4.7 (c).

4.7 Model of a simple transistor switch in the closed state, with LEVEL=2. (a) Model for
the ACTIVE secondary state, (b) Model for the SATURATE secondary state, (c) Model
for the REV_BIASED secondary state.

By selecting LEVEL=2 in the simple transistor switch model, you can more accurately model a physical
transistor and are able to obtain more detailed waveforms on the voltage and current for the device. The
penalty is an increase in the simulation time since more variables need to be monitored and computed
throughout the simulation.

Simple Logic Device Models

To aid the understanding of the models for simple logic devices, the concept of “positive” and “negative”
logic is discussed first. Except for inverters and comparators, all logic gates use a parameter called LOGIC
in the model statement. The purpose of this parameter is to define whether a “positive logic” or a “negative
logic” convention is used in defining the logic states.

If the LOGIC parameter is set to POS, positive logic is used to determine the logic states of the inputs and
the output. This means a state of logic 0 is represented by a lower voltage level than that of a state of logic
1. In this case, the input logic state of an input node is defined to be at logic 1 if

V(ni,nref) $\geq$ threshold + hystwd/2

where ni and nref are the node names of the input node and reference node, respectively.

The input logic state is considered to be at logic 0 if

V(ni,nref) $\leq$ threshold - hystwd/2

The output logic state is equal to the result of the boolean operator associated with the gate applied to the
input logic states. If the output state is equal to logic 1, the value of the voltage source in the output circuit
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is set to voh. If the output state is equal to logic 0, the value of the voltage source in the output circuit is set
to vol. The two parameters vol and voh are specified in the model statement.

If the LOGIC parameter is set to NEG, negative logic is used to determine the logic states of the inputs and
the output. Negative logic means a state of logic 0 is represented by a higher voltage level than that of a
state of logic 1. In this case, the input logic state of an input node ni is defined to be at logic 1 if

V(ni,nref) $\leq$ threshold - hystwd/2

and it is considered to be at logic 0 if

V(ni,nref) $\geq$ threshold + hystwd/2

The output logic state is equal to the result of the boolean operator associated with the gate applied to the
input logic states. If the output state is equal to logic 1, the value of the voltage source, vout, in the output
circuit is set to vol. If the output state is equal to logic 0, the value of vout is set to voh.

Inverter Model

The format for the inverter model statement is:

.MODEL mname INV TH=threshold HYSTWD=hystwd
+ VOL=vol VOH=voh RIN=rin ROUT=rout

where

.MODEL is the six-character keyword “.MODEL”,

mname is a legal model name as explained in Model Names and Subcircuit
Names

INV is the three-character keyword “INV” which identifies the inverter-type
simple logic gates

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts. Together with hystwd, it determines the values of the input
voltage at which the output states of the inverter will be changed from a
logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number to represent the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number which defines the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts. It must be larger than vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance in
ohms

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms.
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The actual model implemented in SIMPLIS for an inverter is shown in 4.8 (b). The input circuit is
represented by a linear resistor of resistance rin placed between the input and reference nodes. The output
circuit is modeled by a Thevenin equivalent network between the output and reference nodes. The value of
resistance for the resistor in the Thevenin network is equal to rout. The value of the voltage source in the
Thevenin network depends on the output state of the inverter.

4.8 SIMPLIS inverter model: (a) Symbol for inverter, (b) Model for inverter. The nodes
ni, no and nref are the input, output and the reference nodes, respectively.

If the output state of an inverter is equal to logic 1, the value of the voltage source, vout, in the output
circuit is set to voh. In this case, the output state of the device is changed to logic 0 when

V(ni,nref) $\geq$ threshold + hystwd/2

where V(ni,nref) represents the voltage of the input node with respect to the reference node.

If the output state of an inverter is equal to logic 0, the value of the voltage source, vout, in the output
circuit is set to vol. In this case, the output state of the device is changed to logic 1 when

V(ni,nref) $\leq$ threshold - hystwd/2

Comparator Model

The format for the comparator model statement is:

s.MODEL mname COMP HYSTWD=hystwd VOL=vol VOH=voh
+ RIN=rin ROUT=rout

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

COMP is the four-character keyword “COMP” to stand for comparator-type simple
logic gates
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HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
differential input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number which defines the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts. It must be larger than vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance in
ohms

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms.

The actual model implemented in SIMPLIS for a comparator is shown in 4.9 (b). There is a resistor of
value rin placed between each input node and the reference node. The output circuit is modeled by a
resistor in series with a voltage source. The resistor has a resistance rout and the source value of the
voltage source, vout, depends on the logic state of the output of the comparator.

4.9 SIMPLIS comparator model: (a) Symbol for comparator, (b) Model for comparator.
The nodes n1, n2 are the two input nodes. The nodes no and nref are the output and
reference nodes, respectively.

If the output state of a comparator is equal to logic 1, the value of the voltage source, vout, in the output
circuit is set to voh. In this case, the output state of the device is changed to logic 0 when
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V(ni1,ni2) $\leq$ - hystwd/2

where V(ni1,ni2) represents the voltage of the first input node with respect to the voltage of the
second input node.

If the output state of a comparator is equal to logic 0, the value of the voltage source, vout, in the output
circuit is set to vol. In this case, the output state of the device is changed to logic 1 when

V(ni1,ni2) $\geq$ hystwd/2

Exclusive-OR Gate Model

The format for the Exclusive-OR model statement is:

.MODEL mname XOR TH=threshold HYSTWD=hystwd
+ VOL=vol VOH=voh RIN=rin ROUT=rout
+ LOGIC={POS | NEG}

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

XOR is the three-character keyword “XOR” to stand for exclusive-OR type sim-
ple logic gates

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts. Together with hystwd, it determines the values of the input
voltage at which the input states of the exclusive-OR gate will be changed
from a logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts. It must be larger than the value of vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance in
ohms

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”
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4.10 Exclusive-OR gate model: (a) Symbol for exclusive-OR gate, (b) Model for
exclusive-OR gate. The nodes ni1 and ni2 are the two input nodes. The nodes no and
nref are the output and reference nodes, respectively.

The actual model implemented in SIMPLIS for an exclusive-OR gate is shown in 4.10 (a). The source
value of the voltage source, vout, in the output circuit depends on the logic state of the output of the gate.
The output state is equal to the result of the boolean EXCLUSIVE-OR operation on the two input states.

OR Gate Model

The format for the OR Gate model statement is:

.MODEL mname ORk TH=threshold HYSTWD=hystwd
+ VOL=vol VOH=voh RIN=rin ROUT=rout
+ LOGIC={POS | NEG}

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

OR is the two-character keyword “OR” to stand for OR-type simple logic
gates

k is an integer from 2 to 9, inclusively, which defines the number of inputs
for the OR gate

TH= is the three-character keyword “TH=”
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threshold is a floating-point number which defines the threshold value of the input
voltage in volts, and together with hystwd, it determines the values of the
input voltage at which the input states of the exclusive-OR gate will be
changed from a logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts. It must be larger than the value of vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”

4.11 k-Input OR gate model: (a) Symbol for k-Input OR gate, (b) Model for k-Input OR
gate. The nodes ni1 and ni2 are the two input nodes. Up to a maximum of 9 inputs can be
accommodated.

The actual model implemented in SIMPLIS for a k-input OR gate is shown in 4.11 (b). The output state is
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equal to the result of the boolean OR operation applied to the k input states.

NOR Gate Model

The format for the NOR Gate model statement is:

.MODEL mname NORk TH=threshold HYSTWD=hystwd
+ VOL=vol VOH=voh RIN=rin ROUT=rout
+ LOGIC={POS | NEG}

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

NOR is the three-character keyword “NOR” to stand for NOR-type simple logic
gates

k is an integer from 2 to 9, inclusively, indicating the number of inputs for
the NOR gate

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts, and together with hystwd, it determines the values of the
input voltage at which the input states of the exclusive-OR gate will be
changed from a logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts and must be larger than vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”

The output state is equal to the result of the boolean NOR operation applied to the k input states.

AND Gate Model

The format for the AND Gate model statement is:

.MODEL mname ANDk TH=threshold HYSTWD=hystwd
+ VOL=vol VOH=voh RIN=rin ROUT=rout
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+ LOGIC={POS | NEG}

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

AND is the three-character keyword “AND” to stand for AND-type simple logic
gates

k is an integer from 2 to 9, inclusively, to stand for the number of inputs for
the AND gate

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts, which together with hystwd, determines the values of the
input voltage at which the input states of the exclusive-OR gate will be
changed from a logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts and must be larger than vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”

The output state is equal to the result of the boolean AND operation applied to the k input states.

NAND Gate Model

The format for the NAND gate model statement is:

.MODEL mname NANDk TH=threshold HYSTWD=hystwd
+ VOL=vol VOH=voh RIN=rin ROUT=rout
+ LOGIC={POS | NEG}

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names
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NAND is the four-character keyword “NAND” to stand for NAND-type simple
logic gates

k is an integer from 2 to 9, inclusively, to stand for the number of inputs for
the NAND gate

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts, which together with hystwd, determines the values of the
input voltage at which the input states of the exclusive-OR gate will be
changed from a logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts and must be larger than vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”

The output state is equal to the result of the boolean NAND operation applied to the k input states.

Set-Reset Flip Flop Model

The format for the Set-Reset flip flop model statement is:

.MODEL mname SRFF TH=threshold HYSTWD=hystwd
+ VOL=vol VOH=voh RIN=rin ROUT=rout
+ LOGIC={POS | NEG}

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

SRFF is the four-character keyword “SRFF” to stand for SRFF-type simple logic
gates

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts, which together with hystwd, determines the values of the
input voltage at which the input states of the exclusive-OR gate will be
changed from a logic 0 to a logic 1 and vice versa
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HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts and must be larger than the value of vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”.

The actual model implemented in SIMPLIS for an S-R flip flop is shown in 4.12 (b). The set and reset
input terminals of an S-R flip flop are associated with the first and second input nodes, respectively,
defined in the device statement. The Q and Q’ output terminals are associated with the first and second
output nodes, respectively, defined in the device statement.

The logic state of the output Q’ is always equal to the logical complement of the logic state of the output
Q. The initial condition specified in the device statement for an S-R flip-flop is used to initialize the logic
output state of the normal output Q. When the logic state of the set input is equal to logic 1, the logic state
of the normal output Q is set to logic 1. When the logic state of the reset input is equal to logic 1, the logic
state of the normal output Q is set to logic 0.

The output state of an S-R flip flop is supposed to be undefined when the input logic states of the set and
reset inputs are both equal to logic 1. For ease of debugging, the output state of the S-R flip-flop as
implemented by SIMPLIS will remain unchanged when both input states are equal to logic 1. (See 4.12)
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4.12 SR Flip Flop model: (a) Symbol for a SIMPLIS S-R flip flop, (b) Model for a
SIMPLIS S-R flip flop.

Clocked Set-Reset Flip-Flop

.MODEL mname CLK_SRFF TH=threshold
+ HYSTWD=hystwd VOL=vol VOH=voh RIN=rin
+ ROUT=rout LOGIC={POS | NEG}
+ TRIG_COND={0_TO_1 | 1_TO_0}

where

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

CLK_SRFF is the eight-character keyword “CLK_SRFF” to stand for CLK_SRFF-type
simple logic gates

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts, which together with hystwd, determines the values of the
input voltage at which the input states of the exclusive-OR gate will be
changed from a logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts
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VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts and must be larger than vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”.

TRIG_COND= is the ten-character keyword “TRIG_COND=”

0_TO_1 is the six-character keyword “0_TO_1”

1_TO_0 is the six-character keyword “1_TO_0”

The actual model implemented in SIMPLIS for a clocked Set-Reset flip-flop is shown in 4.13 (b). The first
two input nodes in the device statement are the set and reset input terminals while the third input node in
the device statement is the clock input terminal.

If TRIG_COND = 0_TO_1, the clocked Set-Reset flip-flop is considered to be “triggered” when the logic
state of the clock input changes from 0 to 1. Similarly, a logic 1 to logic 0 transition for the clock input is
considered to “trigger” this type of flip-flop if TRIG_COND = 1_TO_0. The logic state of each output will
not change except at the triggering moment. At the triggering moment, the logic of the clocked Set-Reset
flip-flop is same as that of the unclocked Set-Reset flip-flop.

4.13 Clocked SR Flip Flop model: (a) Symbol for a SIMPLIS Clocked S-R flip flop, (b)
Model for a SIMPLIS Clocked S-R flip flop.

Clocked J-K Flip-Flop

.MODEL mname CLK_JKFF TH=threshold
+ HYSTWD=hystwd VOL=vol VOH=voh RIN=rin+ ROUT=rout LOGIC={POS | NEG}
+ TRIG_COND={0_TO_1 | 1_TO_0}

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

64
SIMPLIS Reference Manual



4.2. Device Models Used in Simplis

CLK_JKFF is the eight-character keyword “CLK_JKFF” to stand for CLK_JKFF-type
simple logic gates

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts, which together with hystwd, determines the values of the
input voltage at which the input states of the exclusive-OR gate will be
changed from a logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts and must be larger than vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”

TRIG_COND= is the ten-character keyword “TRIG_COND=”

0_TO_1 is the six-character keyword “0_TO_1”

1_TO_0 is the six-character keyword “1_TO_0”

The actual model implemented in SIMPLIS for a clocked J-K flip-flop is shown in 4.14 (b). The first two
input nodes in the device statement are the J and K input terminals while the third input node in the device
statement is the clock input terminal.

If TRIG_COND = 0_TO_1, the clocked J-K flip-flop is considered to be “triggered” when the logic state
of the clock input changes from 0 to 1. Similarly, a logic 1 to logic 0 transition for the clock input is
considered to “trigger” this type of flip-flop if TRIG_COND = 1_TO_0. The logic state of each output will
not change except at the triggering moment. At the triggering moment, the logic of the clocked J-K
flip-flop is same as that of the unclocked Set-Reset flip-flop with one exception: if the states of both the J
and the K inputs are equal to logic 1 at the triggering moment, the states of each output of a clocked J-K
flip-flop will be set to the complement of its logic state right before the triggering moment. Hence, if the
state of the normal output Q is equal to logic 1/0 right before the triggering moment, it will be set to logic
0/1 at the triggering moment if the states of both the J and the K inputs are equal to logic 1 at the triggering
moment.
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4.14 Clocked J-K Flip Flop model: (a) Symbol for a SIMPLIS Clocked J-K flip flop, (b)
Model for a SIMPLIS Clocked J-K flip flop.

Clocked Data Flip-Flop

.MODEL mname CLK_DFF TH=threshold HYSTWD=hystwd
+ VOL=vol VOH=voh RIN=rin ROUT=rout
+ LOGIC={POS | NEG} TRIG_COND={0_TO_1 | 1_TO_0}

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

CLK_DFF is the seven-character keyword “CLK_DFF” to stand for CLK_DFF-type
simple logic gates

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts, which together with hystwd, determines the values of the
input voltage at which the input states of the exclusive-OR gate will be
changed from a logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts and must be larger than vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”
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TRIG_COND= is the ten-character keyword “TRIG_COND=”

0_TO_1 is the six-character keyword “0_TO_1”

1_TO_0 is the six-character keyword “1_TO_0”

The actual model implemented in SIMPLIS for a clocked data flip-flop is shown in 4.15 (b). The first input
node in the device statement is the Data input terminal and the second input node in the device statement is
the clock input terminal.

If TRIG_COND = 0_TO_1, the clocked data flip-flop is considered to be “triggered” when the logic state
of the clock input changes from 0 to 1. Similarly, a logic 1 to logic 0 transition for the clock input is
considered to “trigger” this type of flip-flop if TRIG_COND = 1_TO_0. The logic state of each output will
not change except at the triggering moment. At the triggering moment, the logic state of the normal output
Q will follow the logic state of the data input terminal.

4.15 Clocked Data Flip Flop model: (a) Symbol for a SIMPLIS Clocked Data flip flop,
(b) Model for a SIMPLIS Clocked Data flip flop.

Clocked Toggle Flip-Flop

.MODEL mname CLK_TFF TH=threshold HYSTWD=hystwd
+ VOL=vol VOH=voh RIN=rin ROUT=rout
+ LOGIC={POS | NEG} TRIG_COND={0_TO_1 | 1_TO_0}

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names

CLK_TFF is the seven-character keyword “CLK_TFF” to stand for CLK_TFF-type
simple logic gates

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts, which together with hystwd, determines the values of the
input voltage at which the input states of the exclusive-OR gate will be
changed from a logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts
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VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts and must be larger than vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”

TRIG_COND= is the ten-character keyword “TRIG_COND=”

0_TO_1 is the six-character keyword “0_TO_1”

1_TO_0 is the six-character keyword “1_TO_0”

The actual model implemented in SIMPLIS for a clocked toggle flip-flop is shown in 4.16 (b). The first
input node in the device statement is the Toggle input terminal and the second input node in the device
statement is the clock input terminal.

If TRIG_COND = 0_TO_1, the clocked toggle flip-flop is considered to be “triggered” when the logic
state of the clock input changes from 0 to 1. Similarly, a logic 1 to logic 0 transition for the clock input is
considered to “trigger” this type of flip-flop if TRIG_COND = 1_TO_0. The logic state of each output will
not change except at the triggering moment. At the triggering moment, the logic state of each output
remains the same as the logic state before the triggering moment if the state of the toggle input is logic 0.
On the other hand, the logic state of each output is complemented if the state of the toggle input is logic 1
at the triggering moment.

4.16 Clocked Toggle Flip Flop model: (a) Symbol for a SIMPLIS Clocked Toggle flip
flop, (b) Model for a SIMPLIS Clocked Toggle flip flop.

Latch

.MODEL mname LATCH TH=threshold HYSTWD=hystwd
+ VOL=vol VOH=voh RIN=rin ROUT=rout
+ LOGIC={POS | NEG} ENABLE_LEVEL={0 | 1}

.MODEL is the six-character keyword “.MODEL”

mname is a legal model name as explained in Model Names and Subcircuit
Names
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LATCH is the five-character keyword “LATCH” to stand for LATCH-type simple
logic gates

TH= is the three-character keyword “TH=”

threshold is a floating-point number which defines the threshold value of the input
voltage in volts, which together with hystwd, determines the values of the
input voltage at which the input states of the exclusive-OR gate will be
changed from a logic 0 to a logic 1 and vice versa

HYSTWD= is the seven-character keyword “HYSTWD=”

hystwd is a positive floating-point number which defines the hysteresis width of the
input voltage in volts

VOL= is the four-character keyword “VOL=”

vol is a floating-point number representing the low value of the output voltage
in volts

VOH= is the four-character keyword “VOH=”

voh is a floating-point number which defines the high value of the output voltage
in volts and must be larger than vol

RIN= is the four-character keyword “RIN=”

rin is a floating-point number which defines the input resistance

ROUT= is the five-character keyword “ROUT=”

rout is a floating-point number which defines the output resistance in
ohms

LOGIC= is the six-character keyword “LOGIC=”

POS is the three-character keyword “POS”

NEG is the three-character keyword “NEG”

ENABLE
_LEVEL=

is the thirteen-character keyword “ENABLE_LEVEL=”

The actual model implemented in SIMPLIS for the clocked latch is shown in 4.17 (b). The first input node
in the device statement is the Data input terminal and the second input node in the device statement is the
enable input terminal.

If ENABLE_LEVEL = 1, the latch is considered to be “enabled” when the state of the enable input is logic
1. Similarly, if the state of the enable input is logic 0, a latch is considered to be “enabled” if ENABLE
_LEVEL = 0. The logic state of the output will not change except when the latch is enabled. When the
latch is enabled, the output logic state of the latch follows the logic state of the data input terminal.

4.17 Latch model: (a) Symbol for a SIMPLIS Latch, (b) Model for a SIMPLIS Latch.
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Chapter 5

Subcircuit Definition

5.1 Overview

The basic device elements supported by SIMPLIS – linear resistors, linear inductors and capacitors,
independent voltage and current sources, mutual inductances, four types of linear controlled sources, ideal
transformers, simple switches and simple transistor switches, PWL resistors, PWL inductors and
capacitors, and simple logic gates – are very versatile and they can be used as building blocks to model a
wide spectrum of electronic devices and circuits. For example, an NPN bipolar transistor can be modeled
by a piecewise-linear Ebers-Moll model, by using piecewise-linear resistors for the junction diodes and
two current-controlled current sources to model the current conduction. In addition, three linear resistors
can be inserted to model the contact resistances as shown in 5.1

The physical transistor shown in 5.1 (a) has three nodes while the corresponding model in 5.1 (b) has six
nodes, corresponding to the three terminals of the physical transistor and three internal nodes. If the
physical transistor in 5.1 (a) appears only once in the entire circuit, then the model circuit in 5.1 (b) can be
entered and defined in the input file as is. If the circuit contains several instances of the same device, then
the model circuit in 5.1 (b) has to be repeatedly defined. For each incidence, care must be given to make
sure that

1. The node names are unique compared to the other similar definitions, and

2. Unique names are given for the seven basic elements in each definition.

Obviously, this can be quite a tedious and error prone task when the size of the circuit gets larger.

If the network shown in 5.1 (b) is defined as a subcircuit instead, every incidence of the physical transistor
in the circuit can be described by the following three steps:

1. give each instance of the same type of transistor a unique device name

2. define unique node names for the three terminals of each transistor

3. reference the subcircuit defining the type of transistor involved

The tedious and error prone steps involved in giving unique names to the seven device elements in the
model of 5.1 (b) and giving unique names to the three internal nodes in the model are automatically
handled by the subcircuit feature of SIMPLIS. The definition and the usage of the subcircuit feature of
SIMPLIS is explained in detail in this chapter.
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5.1 Ebers-Moll model of an NPN transistor: (a) Circuit symbol, (b) the Ebers-Moll model.
Note: B’, C’, and E’ are the internal nodes introduced for modelling purposes.

5.2 Subcircuit Definition

The main circuit refers to the circuit definition which begins with the title statement, which is the first line
in the input file, and ends with the .END statement, which is the last significant line in the input file. Any
number of subcircuits can be defined within the main circuit. The subcircuits can also be nested within
other subcircuits. As many as 20 levels of nesting are allowed. A typical group of statements defining a
subcircuit definition duplicates the following pattern of statements:

Start Subcircuit Statement

Comment Statements

Device Statements

Model Statements

Subcircuit Definitions

Control Statements

End Subcircuit Statement

Obviously, the “Start Subcircuit Statement” and the “End Subcircuit Statement” must be the first and the
last statements, respectively, in the definition of a subcircuit. Between these start and end statements, the
comment statements, device statements, model statements, subcircuit definitions, and control statements
can appear in any order or sequence without any effect on the reading of the input file.

Parent and Child Relationships for Subcircuits

When a subcircuit named “AAA” is defined in a general circuit named “BBB”, then the subcircuit “AAA”
is considered the child of the general circuit “BBB” and the general circuit “BBB” is considered the parent
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of the subcircuit “AAA”. Each subcircuit can have only one parent and each general circuit can have zero,
one, or more children. The main circuit is the ancestor of all subcircuits defined in the entire input file and
it does not have a parent.

.SUBCKT Statement

In this section, a brief description of the .SUBCKT statement is given. The format of the .SUBCKT
statement is defined as:

.SUBCKT sname n1 n2 n3 ...

where

.SUBCKT is the seven-character keyword “.SUBCKT” signifying the start of the sub-
circuit definition

sname is a legal subcircuit name as explained in Model Names and Subcircuit
Names. A subcircuit name must be unique within a general circuit. If a
name is used as a subcircuit name in a general circuit, it cannot be used as
a model name in the same general circuit and vice-versa

n1 is the node name of the first external node of the subcircuit

n2 is the node name of the second external node of the subcircuit

n3 is the node name of the third external node of the subcircuit, and so
on

The elements defined in a subcircuit interact with the subcircuit’s parent circuit only through the
subcircuit’s external nodes and the ground node (node 0). Node 0, the ground node, is not allowed to be
used as an external node unless the option of MAPNODE0 is used in an .OPTION control statement.
Refer to Sections Scope of Definition for a Device and for a Node and Option Statements on the properties
of MAPNODE0.

.ENDS Statement (End of Subcircuit Statement)

In this section, a brief description of the .ENDS statement is given. The format of the .ENDS statement is
defined as:

.ENDS [sname]

where

.ENDS is the five-character keyword “.ENDS” signifying the end of one or more
subcircuits

sname is the name of a subcircuit whose definition has not been terminated. The
subcircuit name may be omitted to form the special case of the non-specific
.ENDS statement.

Subcircuits are normally terminated with a .ENDS statement in the .ENDS [sname] , or specific form. If a
subcircuit has not been terminated with this form of .ENDS statement, the non-specific form of the .ENDS
statement:

.ENDS

will terminate the subcircuit. All subcircuits whose definition have not been terminated individually will
be terminated in a group by the .ENDS statement without a subcircuit name. For example, in the
statements shown in the example below, the three subcircuits SUB1, SUB2, and SUB3 are all terminated
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by the .ENDS statement. In this example, because of the use of the non-specific form of the .ENDS
statement, subcircuit SUB1 is the parent of subcircuit SUB2, which is itself the parent of subcircuit SUB3.
The placement of .ENDS statements determines the parent-child relationships of the subcircuits. The line
immediately following the .ENDS statement is considered to be part of the definition of the parent of
subcircuit SUB1.

Example 5.1
.SUBCKT SUB113
R1 1 2 1K
C1 2 3 1U IC=1
X1 2 3 SUB2
.SUBCKT SUB2 101 103
R2 101 102 1K
C2 102 103 1U IC=1
X2 102 103 SUB3
.SUBCKT SUB3 201 203
R3 201 202 1K
C3 202 203 1U IC=1
.ENDS

If sname is given in an .ENDS statement, then sname must be the name of the subcircuit currently defined
or the name of a subcircuit which is an ancestor of the subcircuit currently defined. In this case, the
definition of the current subcircuit, its parent, its grandparent, ..., and the subcircuit whose name matches
sname are all terminated at this .ENDS statement. For the statements in the example below, the statement
.ENDS SUB2 terminates the definition of subcircuits SUB2 and SUB3 but not the definition of subcircuit
SUB1. The line immediately following the “.ENDS SUB2” statement is considered part of the definition
of subcircuit SUB1, which is the parent of subcircuit SUB2.

Example 5.2
.SUBCKT SUB113
R1 1 2 1K
C1 2 3 1U IC=1
X1 2 3 SUB2
.SUBCKT SUB2 101 103
R2 101 102 1K
C2 102 103 1U IC=1
X2 102 103 SUB3
.SUBCKT SUB3 201 203
R3 201 202 1K
C3 202 203 1U IC=1
.ENDS SUB2

Notice that there is a unique correspondence between each .SUBCKT statement and the start of a
subcircuit while each .ENDS statement may be “shared” by several subcircuits. The recommended
practice, however, is to terminate each subcircuit with a unique .ENDS statement having a matching
subcircuit name instead of using the implied termination. This will make reading the input file easier and
will make the subcircuit definitions less susceptible to error.

5.3 Scope of Definition

As pointed out in Sequence of Statements, the scope of definition for a “general circuit” begins at the Start
Circuit Statement and stops at the End Circuit Statement, inclusively. The concept of the scope of
definition is formally defined in this section.

The Scope of Definition for the Main Circuit

The scope of definition of the main circuit, which is the highest level of any circuit specified in the input
file, ranges from the title statement to the .END statement, inclusively.
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The Scope of Definition for a Subcircuit

The scope of definition for a subcircuit ranges from its start at the subcircuit statement to the .ENDS
statement that terminates it, inclusively. The user is reminded that it is possible for several subcircuits to
share the same .ENDS statement to terminate their definition. The scope of definition of a child subcircuit
must be inside the scope of definition of its parent circuit.

5.4 Scope of Definition for a Device and for a Node

The scope of definition for a device is the “youngest” subcircuit whose scope of definition encompasses
the device statement of the device in question. For the statements shown in the example below, the
capacitor CB is considered to be defined in the subcircuit “SUB2” whereas the capacitor CA is considered
to be defined in the subcircuit “SUB1”.

Each device is considered to be local in its subcircuit in the sense that its name is only “made known” to
this subcircuit and its name is not made available to other subcircuits. In the example below, the device
names CA, RA, and XSUB are known only within the subcircuit SUB1, but not in the subcircuit SUB2.
Similarly, the device names CB and RB are known only within the subcircuit SUB2. For devices which are
controlled by the voltage or current of another device, such as some controlled sources, simple switches,
and simple transistor switches, the controlling device must also be defined in the same circuit as the
controlled device or SIMPLIS will not be able to locate the controlling device.

Similarly, the scope of definition for a node is the “youngest” subcircuit whose scope of definition
encompasses the node name in question. For the statements in the example below, the nodes 101, 102, and
103 are considered to be defined in the subcircuit “SUB2” whereas the nodes 1, 2, and 3 are considered to
be defined in the subcircuit “SUB1”. Each node is considered to be local in its circuit and its name is not
made available to other circuits. This rule for the scope of definition of a node applies to all nodes defined
in a circuit except for node 0 .

If the option MAPNODE0 is turned off, which is the default case, node 0 in any subcircuit is treated as the
same node as node 0 in the main circuit. If the option MAPNODE0 is turned on through an .OPTION
statement, then node 0 in any subcircuit is considered to be defined locally in that particular subcircuit.

Since each device or node is only locally defined in its circuit of definition, it is acceptable to have the
same device names and the node names used in different circuits.

Example 5.3
.SUBCKT SUB1 1 3
CA 1 2 10U IC=2
RA 2 3 10K
XSUB 2 3 SUB2
.SUBCKT SUB2 101 103
CB 101 102 10U IC=2
RB 102 103 10K
...
...
.ENDS SUB2
.ENDS SUB1

5.5 External and Local Nodes

Nodes defined in the .SUBCKT statement are called the external nodes of the subcircuit. Hence, node 1 in
the subcircuit “SUB1” in the example below is an external node and node 101 is an external node for
subcircuit “SUB2”. The statements in the example below represent the complete input file of an example
system to be studied. The .TRAN statement in this input file has not yet been covered but its presence does
not affect our discussion here.
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In the definition of the subcircuit “SUB1” in the example below, nodes 1, 2, 3, and 0 appear in the device
statements. Unless the MAPNODE0 option is turned on through an .OPTION statement, node 0 in a
subcircuit is considered to be global in the sense that it is treated to be the same node as node 0 in the main
circuit. Any node in the device statements of a subcircuit that is neither an external node nor a global node
is considered a local node. So in this example, nodes 2 and 3 are local nodes in subcircuit “SUB1” and
node 102 is a local node for subcircuit “SUB2”.

Example 5.4
This is the title line

V1 1 0 DC 10
R1 1 2 1K
R2 2 3 1K
R3 3 0 1K
X1 2 SUB1

.SUBCKT SUB1 1
R1 1 2 1K
C1 2 0 1U
R2 2 3 10K
C2 3 0 1U IC=0
XA 2 SUB2
XB 3 SUB2

.SUBCKT SUB2 101
R101 101 102 1K
C101 102 0 1U IC=0
.ENDS SUB2

.ENDS SUB1

...

...

.TRAN 1 0

.END

5.6 Subcircuit Calls/Instantiation

The format for a statement defining a subcircuit call or instantiation has been elaborated in and is repeated
here for convenience:

Xname n1 n2 ... sname

Such a device statement has a device name that begins with the one-character keyword, “X”, followed by a
set of node names, and the name of a subcircuit at the end.

In order for SIMPLIS to be able to find the referenced subcircuit, the subcircuit instantiation and the
subcircuit named “sname” must be defined in the same general circuit. In addition, the number of nodes
listed in the subcircuit instantiation must match the number of external nodes listed in the subcircuit
definition.

During the reading of the input file, SIMPLIS first combs through the main circuit to register the node
names that have already been employed in the main circuit. In example 5.3, the nodes 0, 1, 2, and 3 have
been utilized in the main circuit. These node names form a list of existing nodes so that new node names
introduced later during subcircuit instantiation will not duplicate these existing node names. Similarly, a
list of device names already employed in the main circuit is created. For this example, this list includes
V1, R1, R2, and R3. Sometimes devices such as the one represented by X1 are referred to as “pseudo
devices” because there is no actual device element corresponding to the keyword “X.”

After reading the main circuit, SIMPLIS reads the circuit instantiation statements in the main circuit and
starts instantiating the subcircuits. Each subcircuit instantiation can be summarized in a four-step
procedure:
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1. Perform a one-to-one mapping of the names of external nodes to the names of corresponding nodes
in the subcircuit instantiation statement.

2. Map the name of each local node to a new node name, different from any existing node name. This
new node name is then added to the list of existing node names.

3. Map the name of each device defined in the subcircuit to a new device name having the same
element keyword, but an individual name different from any existing one. This new device name is
then added to the list of existing device names.

4. Carry out subcircuit instantiation for each subcircuit instantiation statement in the current subcircuit.

In example 5.3, node 1 of subcircuit “SUB1” would be mapped to node 2 when the subcircuit instantiation
for the pseudo-device X1 is carried out. Then local nodes 2 and 3 in “SUB1” are each mapped to a new
node name. The device names R1 and R2 are each mapped to a new name for a linear resistor and device
names C1 and C2 are each mapped to a new name for a linear capacitor. The actual new node names or
device names introduced in the mapping are not important to the user as they are only used internally by
SIMPLIS. For the purpose of illustration here, let us assume that nodes 2 and 3 in “SUB1” are mapped to
nodes 7 and 9, respectively.

When SIMPLIS carries out the subcircuit instantiation for the pseudo-devices XA in the subcircuit
definition of “SUB1”, the four-step procedure is repeated:

1. Node 101 of subcircuit “SUB2” is mapped to node 2 in subcircuit “SUB1”. Since node 2 in “SUB1”
has already been mapped to node 7, node 101 of “SUB2” is mapped to node 7.

2. Node 102, the only local node of subcircuit “SUB2” is mapped to a new node name that is not in the
list of existing nodes. Then this new node name is added to the list of existing nodes.

3. Devices R101 and C101 are mapped to appropriate new device names that are different from
existing device names. Then these device names are added to the list of existing device names.

4. Since there is no subcircuit defined in the subcircuit “SUB2”, the instantiation of XA has been
completed.

When SIMPLIS carries out the subcircuit instantiation for the pseudo-devices XB in the subcircuit
definition of “SUB1”, the four-step procedure is repeated:

1. Node 101 of subcircuit “SUB2” is mapped to node 3 in subcircuit “SUB1”. Since node 3 in “SUB1”
has already been mapped to node 9, node 101 of “SUB2” is mapped to node 9.

2. Node 102 is mapped to a new node name that is not in the list of existing nodes. Then this new node
name is added to the list of existing nodes.

3. Devices R101 and C101 are mapped to appropriate new device names that are different from
existing device names. Then these device names are added to the list of existing device names.

4. Since there is no subcircuit defined in the subcircuit ‘SUB2”, the instantiation of XB has been
completed.

The four-step procedure is repeated until all subcircuits have been instantiated. Notice that the definition
of a subcircuit only provides a model subcircuit with a reference name. The subcircuit does not come into
being until the appropriate subcircuit instantiation.
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Chapter 6

Control Statements

6.1 Overview

The device statements, model statements, and subcircuit definition statements discussed in Chapters
through See are all related to circuit definition. There are additional statements that control the type of
analysis to be performed and the type of output data to be generated by SIMPLIS. These types of
statements are not related to circuit definition. They are collectively called the control statements.

All control statements start with the period (‘.’) as the first character in the statement. However, not all
statements starting with a period are control statements. The exceptions are the .MODEL, .END,
.SUBCKT and .ENDS statements. A control statement can be classified as one of the following types:

1. Options

2. Initial conditions

3. Printing of variables

4. Analyses

All types of control statements can appear within the scope of definition of the main circuit but only the
control statements related to the setting of initial conditions and the printing of variables are allowed to
appear inside the scope of definition of a subcircuit. In general, control statements can appear in any order
of sequence. The one exception to this rule is the order of the analysis statement, which dictates the
sequence in which SIMPLIS performs the different analyses.

6.2 Option Statements

As its name implies, option statements are used to set various options to appropriate values. More than one
option statement can appear in the input file. The format of an option statement is:

.OPTIONS opt1 opt2 ...

where opt1, opt2, and ..., are various options. Some options only take on the values of ON or OFF. The
defaults values for such options are OFF and the option values are turned ON by having the corresponding
keyword present in an option statement. Some other options assume the form of the parameter assignment
outlined in . Option statements are not allowed to be placed within the scope of definition of any subcircuit
because the options apply to the entire system under study. The various options and their meanings are:
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EMSG_MAX = k Sets the Maximum number of error messages that are generated before
the syntax checking of the input file is suspended. “EMSG_MAX=”
is the nine-character keyword “EMSG_MAX=” and k is a positive in-
teger. For very severe syntax errors, the syntax checking is suspended
before the number of error messages reaches this maximum limit. The
default value for k is 20.

EXPAND Show the entire circuit after all subcircuit calls have been instantiated.
The listing of this expanded circuit is shown in the file “XXXX.lst”
where XXXX is the name of the input file. The default is not to show
the expanded circuit.

MAPNODE0 By default, node 0 is not allowed to appear as an external node in the
definition of a subcircuit and node 0 in a subcircuit is considered the
same node as node 0 in the main circuit. If MAPNODE0 is specified
as an option, node 0 in a subcircuit would not be considered as the
same node as node 0 in the main circuit. In such a case, node 0 in
the subcircuit is appropriately mapped for each subcircuit instantia-
tion and it is allowed to appear as an external node in the subcircuit
definition.

PSP_START = t1 For time-domain transient analysis, the print variables are generated
for time values larger than or equal to the value of t1. “PSP_START=”
is the ten-character keyword “PSP_START=” and t1 is a nonnegative
floating-point number. If this option is not specified, the default value
for t1 is the time the simulation starts saving data for the transient
analysis. Refer to the .TRAN statement for details of the transient
analysis.

PSP_END = t2 For time-domain transient analysis, the print variables are generated
for time values up to but not larger than the value of t2. “PSP_END=”
is the eight-character keyword “PSP_END=” and t2 is a positive num-
ber larger than the value of t1. If this option is not specified, the default
value for t2 is the stop time of the transient analysis as specified in the
.TRAN statement. If the value of t2 in PSP_END is smaller than the
value for t1 in PSP_START, no output print file will be generated for
the transient analysis.

PSP_NPT = n Set the minimum number of data points generated for printing the out-
put variables during the transient analysis. “PSP_NPT=” is an eight-
character keyword and n is an integer between 2 and 100000001, in-
clusively. (PSP_END - PSP_START)/(PSP_NPT - 1) is the step size
of the time variable in the print file generated for the transient analy-
sis. If PSP_NPT is not specified, no output print file will be generated
for the transient analysis.

POP_ITRMAX = n POP Iteration Limit. This option sets the maximum number of itera-
tions for the POP analysis.

If set, the option value must be a positive integer between 1 and 200,
inclusively.

If this option is not set, it defaults to 20.

Example:

.OPTIONS POP_ITRMAX=50
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POP_USE_TRAN
_SNAPSHOT

This option instructs POP to take advantage of the last data point of a
previous transient simulation, assuming the circuit and the initial con-
ditions remained the same between the two simulation runs.

This option does not take on any value. It is either turned ON or turned
OFF. If it is turned ON, the POP analysis will use the last data point
of a previous transient simulation as the initial condition to start the
POP analysis. Usually this leads to a faster POP analysis.

Example:

.OPTIONS POP_USE_TRAN_SNAPSHOT

POP_OUTPUT
_CYCLES=n

Number of cycles of steady-state POP Data to show. After a suc-
cessful POP analysis, SIMPLIS will generate the steady-state time-
domain waveforms for an integral number switching cycles.

If set, the option value must be a positive integer between 1 and 16,
inclusively.

If this option is not set, it defaults to 5.

Example:

.OPTIONS POP_OUTPUT_CYCLES=3

POP_SHOWDATA Display POP Data. In general, this option is turned on as a debugging
aid if a Periodic Operating Point (POP) analysis fails.

This option does not take on any value. It is either turned ON or turned
OFF. If it is turned ON, the progress of the periodic operating point
analysis is output and the resulting waveforms may be viewed in the
same manner as for the POP cycles. To turn this option ON, the line
in the following example should be output to the SIMPLIS simulation
input deck.

Example:

.OPTIONS POP_SHOWDATA

SNAPSHOT_INTVL Minimum duration between snapshots. This instructs SIMPLIS to
save a snapshot of the internal state of the simulation at intervals no
smaller than the option value set for SNAPSHOT_INTVL.

If set, the option value must be a positive floating-point number. En-
gineering prefixes are allowed.

If this option is not set, it defaults to zero. If this option is not set, or
if the option is set to zero, SIMPLIS will only save snapshots at t=0
and the end time of the simulation.

Example:

.OPTIONS SNAPSHOT_INTVL = 100u
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SNAPSHOT_NPT Maximum number of saved snapshots. This sets the maximum num-
ber of snapshots that SIMPLIS saves. If there is a conflict between
the values set for the SNAPSHOT_NPT and SNAPSHOT_INTVL op-
tions, the value set for the SNAPSHOT_NPT option will override the
value set for the SNAPSHOT_INTVL option.

If set, the option value must be a positive integer between 11 and 2001,
inclusively.

If this option is not set, SIMPLIS will only save snapshots at t=0 and
the end time of the simulation.

Example:

.OPTIONS “SNAPSHOT_NPT=30

NEW_ANALYSIS Force new analysis. This option does not take on any value. It is either
turned ON or turned OFF. If it is turned ON, SIMPLIS will ignore any
relevant data files from a previous simulation, even if the circuit and
the initial conditions between the two simulation runs are the same.
If this option is turned OFF, SIMPLIS will try to take advantage of
any relevant data files from the previous simulation if the circuit and
the initial conditions have not changed from the previous simulation
run.

To turn ON this option, the line in the following “Example” section
should be output to the SIMPLIS simulation input deck. .OPTIONS
NEW_ANALYSIS

FREQ_DOMAIN Domain in small-signal AC analysis. The small-signal AC analysis
can be carried out in the continuous (s-) domain or in the discrete (z-)
domain.

If set, the option value must be either the character ‘S’ or ‘Z.’

If this option is not set, it defaults to ‘S.’

Example: .OPTIONS FREQ_DOMAIN = Z

IGNORE_UNITS Ignore Units. This option does not take on any value. It is either turned
ON or turned OFF. If it is turned ON, SIMPLIS will ignore any trailing
units or strings when it is looking for a floating-point number. For
example, in specifying the voltage of a DC voltage source, SIMPLIS
would not complain the trailing ‘V’ here 1.23V if this options is turned
ON.

The default is to not to turn ON this option and SIMPLIS would then
complain about the trailing string or units. To turn ON this option,
the line in the following “Example” section should be output to the
SIMPLIS simulation input deck.

Example:

.OPTIONS IGNORE_UNITS
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NO_FORCED_DATA Disable forcing data points before and after each switching instant.
This option does not take any value. It is either turned ON (option
present) or turned OFF (option not present). If it is turned ON, SIM-
PLIS will not generate data points before and after each switching
instant. If it is turned OFF, SIMPLIS will create data points each side
of a switching instant.

Example - turn option ON:

.OPTIONS NO_FORCED_DATA

Under most circumstances, this option should remain turned OFF.
For very long simulations that generate extremely large data sets, the
waveform viewer may be slow responding to user commands. In such
cases, turning ON the NO_FORCED_DATA option will reduce the
number of simulation data points displayed in the waveform viewer
during each switching cycle. For long simulations that involve many
switching instants in one switching cycle this reduction can be signif-
icant. Enabling this option in no way degrades the accuracy of the
SIMPLIS solution, but it can potentially reduce the fidelity of the dis-
played waveforms within each switching cycle.

MIN_AVG_TOPOLOGY
_DUR

SIMPLIS calculates the average time it spends in each toplogy
over a number of topologies defined by AVG_TOPOLOGY_DUR
_MEASUREMENT_WINDOW. If this value falls below MIN_AVG
_TOPOLOGY_DUR, the simulation aborts. The default value is 1e-
18.

The purpose of this is to resolve problems with the simulation ap-
parently getting ‘stuck’ in situations where there are unexpected very
high speed oscillations.

AVG_TOPOLOGY_DUR
_MEASUREMENT
_WINDOW

Default value = 128. See MIN_AVG_TOPOLOGY_DUR above for
details

6.3 Control Statements for Setting Initial Conditions

As outlined in , initial conditions are required to be supplied in the device statements. However, an .INIT
statement can be used to override the initial conditions supplied in the device statements. .INIT statements
are allowed to be placed within the scope of definition of a subcircuit and more than one .INIT statement
can appear within the same scope of definition.

Linear and PWL Capacitors

The .INIT statement can be used to override the initial voltage of a linear capacitor or a PWL capacitor.
For example,

.INIT V(C11)=0 V(!C23)=12.0

means that the initial voltage of linear capacitor C11 is set to 0 V while the initial voltage of PWL
capacitor !C23 is set to 12 V. C11 and !C23 must be in the same scope of definition as the .INIT statement.
Notice that more than one initial condition setting can be supplied in the same .INIT statement. Each initial
condition setting is in the form of a parameter assignment as outlined in . Whatever initial voltages were
specified for C11 and !C23 in the device statements, they are superseded by 0 V and 12 V, respectively.
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Linear and PWL Inductors

The .INIT statement can be used to override the initial current of a linear inductor or a PWL inductor. For
example,

.INIT I(L12)=0 I(!L22)= -2m

means that the initial current of linear inductor L12 is set to 0 A whereas the initial current of PWL
inductor !L22 is set to -2 milliamperes.

Setting of Initial States for S and Q Switches

The .INIT statement can be used to override the initial states of simple switches and simple transistor
switches:

.INIT Q1=OPEN SA=CLOSE

means that the initial state of the Q switch Q1 is set to OPEN whereas the initial state of the S switch SA is
set to CLOSE.

Setting of Initial Segment for PWL Resistors

The .INIT statement can be used to override the initial segment of operation for PWL resistors:

.INIT !R100=3

means that the initial segment of operation for the PWL resistor !R100 is set to the 3rd segment of this
device.

Setting of Initial State for Simple Logic Gates

The .INIT statement can be used to override the initial state of a simple logic gate. For example,

.INIT !D9=0 !D8=1

means that the initial output state for logic gate !D9 is set to logic 0 whereas the initial output state for
logic gate !D8 is set to logic 1.

Initial Conditions for Devices in a Subcircuit

Since initial conditions are either specified in the device statements or through the .INIT statements
discussed so far, two subcircuit instantiations referencing the same subcircuit definition naturally have
identical initial conditions. Let us examine the statements in example 6.1 (a). The capacitor, originally
named CA in subcircuit “SUB1”, has an initial branch voltage of 1 V in the subcircuit instantiation of both
X1 and X2.

In some situation, it is desirable to be able to set the initial condition of a device in a subcircuit to different
values for different subcircuit instantiations. SIMPLIS allows the initial conditions for devices in a child
subcircuit be overridden with an .INIT statement in the parent circuit. The extra .INIT statement shown in
example 6.1 (b) means that the initial voltage on capacitor CA in subcircuit “SUB1” for the instantiations
X1 and X2 should be 5 V and 2 V, respectively.

The capability to override device initial conditions can be extended to lower levels of subcircuits. For
example, the expression

.INIT X123.X456.!D9=1
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means that the logic gate !D9 in the subcircuit referred to as X456 in a subcircuit referred to as X123 in the
current circuit is set to have an initial output state of logic 1. The .INIT statement in an ancestor circuit
always overrides any initial condition specified in a subcircuit. For example, if

.INIT I(L12)=0

appears within the scope of definition of a subcircuit referred to as X123 in the main circuit and

.INIT I(X123.L12)=1

appears within the scope of definition for the main circuit, the initial current for this inductor is set to 1 A,
not 0 A.

Example 6.1a
X1 1 2 SUB1
X2 9 8 SUB1
.SUBCKT SUB1 101 102
RA 101 103 1K
CA 103 102 1U IC=1
.ENDS SUB1\\

Example 6.1b
X1 1 2 SUB1
X2 9 8 SUB1
.SUBCKT SUB1 101 102
RA 101 103 1K
CA 103 102 1U IC=1
.ENDS SUB1
.INIT V(X2.CA)=2 V(X1.CA)=5\\

6.4 Control Statements for Printing Variables

There are two control statements that provide the ability to select data output by SIMPLIS. These are
.PRINT and .KEEP. These are detailed in the following sections.

.PRINT

The .PRINT statement is used to specify the output variables to be recorded for printing/plotting. Note that
with the SIMetrix/SIMPLIS, .PRINT only specifies data to be saved in the binary file and does not create
ASCII tabular output. .PRINT instructs SIMPLIS to send the specified data to the SIMetrix front end.
SIMetrix saves the data as a vector in its binary file. The actual vector name used is described in the
following paragraphs.

The format of .PRINT is:

.PRINT var1 var2 ...

where var1, var2, and ... are legal print variables. Forms of legal print variables and their meanings are
listed below:

V(DName) Branch voltage across a two-terminal device in the current cir-
cuit. DName is the device name of a device whose element key-
word is one of the following:

R, L, C, V, I, E, G, H, F, Q, S, !R, !L, and !C

SIMetrix vector name will be DName.
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V(#NodeName) Voltage on mapped node NodeName. Mapped nodes are created
using the .NODE_MAP statement.

SIMetrix vector name will be #NodeName.

I(DName) Branch current through a two-terminal device in the current cir-
cuit. DName is the device name of a device whose element key-
word is one of the following:

R, L, C, V, I, E, G, H, F, Q, S, !R, !L, and !C

SIMetrix vector name will be of the form:

DName#pinname

where pinname will be p for the first pin and n for the second
pin.

I(DName#pinname) Current through a device pin. DName is the device name while
pinname is either a pin number or mapped pin name. If Dname is
a subcircuit device and the subcircuit definition includes .NODE
_MAP statements to map its external nodes to names, then those
mapped names may be used for pinname. For example:

X1 1 2 3 SUB1
.SUBCKT SUB1 100 200 300
.NODE_MAP INP 100
.NODE_MAP INN 200
.NODE_MAP OUT 300
...
...
.ENDS SUB1

.PRINT I(X1#INP)

The above .PRINT will instruct SIMPLIS to output the current
into pin connected to node 1 of X1. The resulting SIMetrix vec-
tor will be called “X1#INP”.

V(Node1,Node2) Differential voltage from node Node1 to node Node2 where
Node1 and Node2 are node names in the current circuit.

V(Node1) Voltage from Node1 to node 0, the ground node. This form is
allowable only in the main circuit and only if node 0 is present
in the main circuit.

SIMetrix vector name will be:

Node1

V(Xname1.Xname2.DName) Branch voltage across the device named DName in the subcircuit
referred to as Xname2 in the subcircuit referred to as Xname1 in
the current circuit. The allowable device is same as those listed
for the form of V(DName).

SIMetrix vector name will be:

Xname1.Xname2.DName

84
SIMPLIS Reference Manual



6.4. Control Statements for Printing Variables

I(Xname1.Xname2.DName) Branch current through the device named DName in the sub-
circuit referred to as Xname2 in the subcircuit referred to as
Xname1 in the current circuit.

SIMetrix vector name will be of the form:

Xname1.Xname2.DName#pinname

where pinname will be p for the first pin and n for the second
pin.

V(Xname1.Xname2.Node1,Node2) Differential voltage from node Node1 to node Node2 where
Node1 and Node2 are node numbers in the subcircuit referred
to as Xname2 in the subcircuit referred to as Xname1 in the cur-
rent circuit.

NODE_V Print all node voltages in the main circuit with respect to the
ground node, node 0, in the main circuit.

ALL Print all node voltages in the main circuit with respect to the
ground node, node 0, in the main circuit and print all branch
currents of the two-terminal devices in the main circuit. The
two-terminal devices refer to those whose branch current can be
printed through the form of I(DName).

In the normal case, no more than 200 output variables can be created for printing/plotting in one
simulation. If more than 200 output variables are needed, the output variables can be generated through
more than one pass of the simulation.

If the print variable NODE_V or ALL is used, then node 0 must be present in the main circuit. Although
the number of output variables that are associated with NODE_V or ALL are obviously large, NODE_V
or ALL is counted as one print variable in counting towards the maximum number of 200 print variables
allowed in one simulation. Simulation can be substantially slower with NODE_V or ALL as a printing
variable. In addition, if ALL is used as the print variable, other print variables defined in the main circuit,
or in any of its descendant subcircuits, are ignored.

There are two subtle points that need to be understood when figuring out the SIMetrix vector names. If
DName or Xname as appeared in the .PRINT statement is a device/subcircuit name containing a dollar
sign ‘$’, then all characters ahead of the first dollar sign and the first dollar sign are stripped in the
corresponding DName or Xname in the SIMetrix vector name. For example, the following .PRINT
statement

.PRINT I(X$\$$U12.XABC.R234)

will result in a SIMetrix vector name of:

U12.XABC.R234#p

In addition, the SIMetrix vector names shown for each type of print variables above assume the .PRINT
statement is defined in the top-level circuit/schematic. If the .PRINT statement is defined in a
subcircuit/component schematic, then the actual SIMetrix vector name will be prepended by a path prefix.
Let us take the following two .PRINT statements as examples:

.PRINT V(#VOUT)

.PRINT I(X$\$$U12.XABC.R234)

If these .PRINT statements were defined in the top-level circuit/schematic, the SIMetrix vector names
would be #VOUT, and U12.XABC.R234#p, respectively. Suppose the subcircuit/component schematic
containing these two .PRINT statements is two-level down from the top-level circuit/schematic. In
addition, suppose that the subcircuit/component schematic containing these two .PRINT statements can be
reached from the top-level schematic by first descending into a component schematic named “Component
A” with a reference designator of U76 and then descending into a component schematic named
“Component B” with a reference designator of U34 as shown in the figure below.
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The SIMetrix vector names associated with the same two .PRINT statements would then be
U76.U34.#VOUT and U76.U34.U12.XABC.R234#p, respectively.

.KEEP

The purpose of the .KEEP statement is to instruct SIMPLIS in a very generic way to produce and save
voltages/currents for printing/plotting in the subcircuits/child components, thus enabling the debugging of
the sucbircuits/child component schematics through random probing without knowing in advance what
specific voltages/currents needed to be produced and kept for printing/plotting. Similar to the .PRINT
statement, the .KEEP statement in the SIMetrix/SIMPLIS environment only specifies data to be saved in
the aforementioned binary file and does not create the ASCII tabular output.

The format of .KEEP is:

.KEEP keep_var1, keep_var2, ...

where keep_var1, keep_var2, and ... are legal keep variables.

Multiple .KEEP statements may be defined in a subcircuit/schematic. Forms of legal keep variables and
their meanings are listed below:
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*V All node voltages in the current circuit/schematic. With this keep vari-
able specified, all node voltages in the current/schematic are produced and
saved for printing/plotting. This keep variable is allowed only if node
0 is present in the top-level circuit/schematic because the node voltages
are measured with respect to the voltage of node 0 in the top-level cir-
cuit/schematic.

The SIMetrix vector names for the node voltages generated by the *V keep
variable will be same as the SIMetrix vector names for the node voltages
generated through .PRINT statements. So a node with a node number of
NodeNum without any node mapping will result in a node voltage whose
SIMetrix vector name is NodeNum, plus a path prefix if this node is not in
the top-level schematic. Similarly, a node mapped to a name of NodeName
will result in a node voltage whose SIMetrix vector name is #NodeName,
plus a path prefix if this node is not in the top-level schematic.

*I All printable/plottable currents for the current circuit/schematic. With this
keep variable specified, all branch currents through two-terminal devices
in the current circuit/schematic and all pin currents for subcircuit devices
in the current circuit/schematic are produced and saved for printing/plot-
ting.

The SIMetrix vector names for the currents generated by the *I keep vari-
able will be same as the SIMetrix vector names for the currents generated
through .PRINT statements. So the SIMetrix vector name for a branch cur-
rent will have the form of DName#pinname, where DName is the device
name, and pinanme will be p for the first pin and n for the second pin. If
the device is not in the top-level schematic, the SIMetrix vector name will
have a path prefix. Similarly, the SIMetrix vector name for a subcircuit pin
current will have the form of DName#pinname where DName is the device
name, and pinname is either a pin number or a mapped pin name. Again,
the SIMetrix vector name will have a path prefix if the device DName is
not placed in the top-level schematic.

**V This is similar to the *V keep variable used for producing node voltages.
Specifying **V as a keep variable in the current circuit/schematic is equiv-
alent to specifying *V in the current circuit/schematic and in all its descen-
dant subcircuits/schematics. Hence, it will produce node voltages for the
current circuit/schematic and all its descendant subcircuits/schematics for
printing/plotting. Similar to the *V keep variable, this keep variable is al-
lowed only if node 0 is present in the top-level circuit/schematic. For a very
large hierarchical design, having the **V keep variable defined in the top-
level schematic could result in a large number of print/plot variables and
can lead to substantially slower simulations.

**I This is similar to the *I keep variable used for producing branch and de-
vice pin currents. Specifying **I as a keep variable in the current cir-
cuit/schematic is equivalent to specifying *I in the current circuit/schematic
and in all its descendant subcircuits/schematics. Hence, it will produce
branch currents through two-terminal devices and subcircuit pin currents
for the current circuit/schematic and all its descendant subcircuits/schemat-
ics for printing/plotting. For a very large hierarchical design, having the
**I keep variable defined in the top-level schematic could result in a large
number of print/plot variables and can lead to substantially slower simula-
tions.
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6.6. Creating SIMetrix Plots

6.5 Mapping Names to Node Numbers

The SIMPLIS input deck format requires all nodes to be defined as numbers. The names used for the
SIMetrix vectors for the voltage on a node always use the name of that node. So the SIMetrix vector
names will be numbers as well. This can be inconvenient, so a method is available to instruct SIMPLIS to
use a user defined name for any node voltage vector. This is done using the .NODE_MAP statement. The
format of the .NODE_MAP statement is:

.NODE_MAP mapped_name node_number

where:

mapped_name User defined name. Must have at lease one alphabetic character and
may comprise any alphanumeric character in addition to the underscore
(’_’).

node_number Node number to be mapped.

For example

.NODE_MAP VOUT 27

If the above line is included in the SIMPLIS input deck, the vector for the voltage at node 27 will be
named “VOUT”.

The .NODE_MAP statement may also be used inside subcircuits. If such a .NODE_MAP statement is
used to map an external node, then .NODE_MAP statements must be issued for all external nodes.
Mapping external nodes also controls the naming of current vectors into the subcircuit’s terminals. See
Control Statements for Printing Variables for further details.

6.6 Creating SIMetrix Plots

SIMPLIS supports the .GRAPH statement for creating plots while the simulation proceeds. For full
documentation on .GRAPH, please refer to the SIMetrix Simulator Reference Manual/Command
Reference/.GRAPH. Note that the names used for signals in .GRAPH must comply with SIMetrix vector
names rather than the format SIMPLIS uses for .PRINT. For example, the following instructs SIMPLIS to
save and plot the voltage on node 2:

.PRINT V(2)

.GRAPH :2 CurveLabel="Voltage at Node2"

Note that ‘2’ is prefixed with a colon. This is to distinguish node ‘2’ from the constant value 2.0.

Another example:

.NODE_MAP VOUT 224

.PRINT V(#VOUT)

.GRAPH #VOUT CurveLabel="Output voltage"

In the above, node 224 has been mapped to the name “VOUT”. Subsequently, the data on node 224 may be
referenced as #VOUT.

6.7 Control Statements Associated with Analyses

The analyses supported by SIMPLIS at this point are the time-domain transient analysis, the periodic
operating point analysis, and the frequency-domain small-signal (AC) analysis.
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6.7. Statements Associated with Analyses

.TRAN - Time-Domain Transient Analysis

The .TRAN statement instructs SIMPLIS to perform a time-domain transient analysis. The initial
conditions for various devices are taken from the device statements and any overriding initial conditions
supplied from the .INIT statements. The time-domain transient analysis always starts with the time
variable set to zero. The format for the .TRAN statement is

.TRAN tstop tsave

where

.TRAN is the five-character keyword “.TRAN”.

tstop is a positive floating-point number in seconds to stand for the time instant
at which the time-domain transient analysis stops

tsave is a positive floating-point number smaller than tstop.

The transient analysis starts with the time variable t equal to 0.0 and stops at t equal to tstop. The result of
the simulation is not saved, however, until the time variable t reaches tsave. Output data for the
time-domain transient analysis can be generated for printing or plotting for any time instant between tsave
and tstop, inclusively.

.POP - Periodic Operating Point Analysis

See SIMPLIS-POP for a detailed description.

.AC - Frequency Domain Analysis

See SIMPLIS-FX for a detailed description.
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Chapter 7

Running SIMPLIS

7.1 Overview

The version of SIMPLIS covered by this manual may only be used within the SIMetrix environment.

Usually, circuits are entered using the SIMetrix schematic editor which takes care of many of the syntax
details covered elsewhere in this manual. Full details may be found in SIMetrix User’s Manual/Schematic
Editor

It is also possible to run SIMPLIS using a netlist prepared by hand or with another schematic entry tool.
This must be done within the SIMetrix environment and the following sections describe how.

Some features of the SIMetrix schematic editor that are useful for running SIMPLIS are also repeated here
for convenience.

7.2 Running SIMPLIS on a SIMetrix Schematic

You must first enter the schematic in ‘SIMPLIS mode’. To select SIMPLIS mode, from the schematic
window select menu File|Select Simulator then select SIMPLIS. If you have already added some
components in SIMetrix mode, you may get an incompatibility warning. This means that some of the
components placed will not work with SIMPLIS. These will need to be either replaced with suitable
alternatives or re-entered.

When the schematic has been entered, select your chosen analysis mode using Simulator|Choose
Analysis... .

You can now run the simulation by pressing F9 or menu Simulator|Run.

Adding Extra Netlist Lines

The analysis mode selected using the schematic editor’s Simulator|Choose Analysis... menu is stored in
text form in the schematic’s simulator command window. If you wish, it is possible to edit this directly.
Note that the text entered in the simulator command window and the Simulator|Choose Analysis... dialog
settings remain synchronized so you can freely switch between the two methods.

To open the simulator command window, select the schematic then press the F11 key. It has a toggle
action, pressing it again will hide it. If you have already selected an analysis mode using the Choose
Analysis dialog box, you will see the simulator controls already present.

The window has a popup menu selected with the right key. The top item “Edit file at cursor” will open a
text editor with the file name pointed to by the cursor or selected text item if there is one.
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7.4. Running SIMPLIS from a Script

The simulator command window can be resized using the splitter bar between it and the schematic
drawing area.

You can add anything you like to this window not just simulator commands. The contents are simply
appended to the netlist before being presented to the simulator. So, you can place device models, mutual
inductor specifications, .OPTION controls or simply comments. The Choose Analysis dialog will parse
and possibly modify analysis controls and some .OPTIONS settings but will leave everything else intact.

Some schematics may be simulated with both SIMPLIS and the SPICE based SIMetrix simulator. The
commands (referred to as ‘controls’ in SIMetrix documentation) for these simulators are, however,
incompatible. For this reason, SIMetrix and SIMPLIS commands are separated using the .SIMULATOR
control. The syntax for this is:

.SIMULATOR SIMPLIS | SIMetrix | DEFAULT

SIMPLIS All lines following and until the next .SIMULATOR control will only be
passed to the netlist in SIMPLIS mode.

SIMetrix All lines following and until the next .SIMULATOR control will only be
passed to the netlist in SIMetrix mode.

DEFAULT All lines following and until the next .SIMULATOR control will be passed
to the netlist in both modes.

7.3 Running SIMPLIS for an External Netlist

You may wish to run SIMPLIS on a netlist (also known as an ‘Input Deck’) created by hand or by another
program.

To run a netlist from the SIMetrix GUI, select the command shell menu SIMPLIS|Run Netlist... then
select the file you wish to run. Note that this will pass the netlist through the netlist pre-processor before it
is presented to SIMPLIS. The pre-processor provides some additional features to import and parameterize
device models. See Netlist Preprocessor for details. Note that a complete syntactically correct SIMPLIS
netlist will not be functionally altered by the pre-processor.

7.4 Running SIMPLIS from a Script

SIMPLIS may be launched from a script using the command RunSIMPLIS:

RunSIMPLIS filename

filename Name of file containing the SIMPLIS netlist. If a full path is not sup-
plied, filename will be assumed to be relative to the current directory. Note
that the extension of the file must always be supplied; no default is as-
sumed.

The RunSIMPLIS command will not pre-process the netlist. This must be done separately using the
PreProcessNetlist command. See Netlist Preprocessor.

RunSIMPLIS is the primitive SIMetrix command that launches SIMPLIS. However, when running a
simulation on a schematic, a number of other activities are performed. These include pre-processing the
netlist generated by the schematic editor and also resolving a trigger device for POP analysis (see
SIMPLIS-POP). If you wish to simulate a schematic in exactly the same manner as the Run menu, you
need to execute the script simplis_run. This simulates the currently open schematic. The full source for
simplis_run can be found on the install CD.
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7.5. Running SIMPLIS from a DOS Prompt

7.5 Running SIMPLIS from a DOS Prompt

The version of SIMPLIS supplied with SIMetrix/SIMPLIS cannot be run directly from the command
(DOS) prompt.

7.6 SIMPLIS Execution

SIMPLIS runs as a separate process but communicates with SIMetrix while it is running to provide
information on the progress of the run.

This progress is displayed in the SIMPLIS Status Window as shown below.

The message window shows some detail about the progress and is similar to that displayed in earlier
versions without the status window display.

7.7 Aborting a SIMPLIS Run

At any point during a simulation run, you can abort the simulation. Select the command shell menu
SIMPLIS|Abort Run or simply press the Abort button on the SIMPLIS Status Window. This will abort
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7.8. Automatic Program Suspension by SIMPLIS

SIMPLIS at the next suitable point in its execution which may not be immediately. Note that there is no
resume facility with SIMPLIS.

7.8 Automatic Program Suspension by SIMPLIS

Sometimes the input circuit may contain a switching conflict which SIMPLIS cannot resolve. For
example, connecting the input and output nodes of a SIMPLIS inverter together creates a situation where
the inverter cannot locate a valid logic output state from which to operate. Once such a switching conflict
occurs, the simulation enters an endless loop and it is unable to advance forward in time. After attempting
200 times without any success in locating a correct operating state, SIMPLIS prints a message to the
message window similar to the following, and aborts the simulation:

Unable to find a starting operating point

or

At t = 1.2345e-06, it is unable to find the correct state of
operation for some device.
For example, check the following devices:
!R1, !R2, and !R3

If such a message appears, you should carefully inspect the input file and appropriate data files generated
by SIMPLIS to locate the source of the switching conflict. In a slightly different scenario, the situation may
occur when the switching logic is properly defined but a few circuit elements are connected in a manner
which may cause the simulation to go through very fast and repetitive switching in a small group of states.
If the time interval between two switching events is so short to be negligible compared to the actual
simulation time variable, SIMPLIS aborts the simulation and displays a similar message to the following:

No advance in the time variable
at t = 3.1425e-05 sec.

This example error message means that when the time variable, t, reaches 3.1425x10 -5 sec in the
simulation, two consecutive switching events have occurred within a time span that is negligible compared
to 3.1425x10 -5 sec. A number is considered to be negligible to another number if it is sixteen orders of
magnitude below the larger number. Again, you should then inspect the input file and appropriate data files
generated by SIMPLIS to locate the source of the problem.

7.9 Netlist Preprocessor

Overview

The netlist preprocessor is actually part of SIMetrix not SIMPLIS. However, although it can be used with
SIMetrix (SPICE) netlists, it was originally developed for use with SIMPLIS and so is documented here.
The netlist preprocessor provides some additional functionality not provided by the simulator itself. These
functions are:

1. Searches the model library for unresolved subcircuits and adds them to the netlist.

2. Evaluates parameterised expressions.

3. Builds static subcircuits from parameterised definitions

4. Localizes globally defined subcircuits for SIMPLIS compatibility.

The parameterization system includes conditional and looping features using the controls .IF and .WHILE.
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7.9. Netlist Preprocessor

Launching Preprocessor

The preprocessor is launched using the script command PreProcessNetlist. The syntax is:

PreProcessNetlist [/inAppend extraInputLines] [/simulator SIMPLIS|SIMetrix] [/mc]
+ [/importglobals] [/params paramlist] [/mcseed seed] [/rawdeck] [/mclogfile mclogfile]
+ [/optid optimiser_id]
+ inFile outFile

where

inFile Input file name to be processed

outFile File to receive result

extraInputLines Additional lines appended to input file. Each line separated by a semi-colon
‘;’.

/mc If present, enables Monte Carlo distribution functions. When absent these
functions will return unity

/importglobals If present, any values defined in the global group in the front end will be
imported. This allows values in scripts to be passed to the pre-processor.
E.g.

paramlist semi-colon delimited list of name=value pairs to define local parameters.
For example:

Let global:param1 = 100.0

The value of param1 will be available in the preprocessed netlist

seed Assign Monte Carlo seed value. Requires /mc

optimiser_id If specified, the analysis definitions and associated parameters will be
extracted from the specified optimiser definition overriding the main
netlist

/rawdeck This produces an intermediate file with the extension .rawdeck which in-
cludes the output after the models and subcircuits have been gathered from
the library but before resolution of parameter expressions. This is intended
for building encrypted parameterised models

mclogfile If specified, enables generation of a Monte Carlo log file which lists the
values of components affected by Monte Carlo distribution functions. Re-
quires /mc

The /simulator switch allows the specification of the simulator that the netlist is intended for and affects
library searching and the effect of the .SIMULATOR control. The default value is “SIMPLIS”.

The PreProcessNetlist command called automatically when a SIMPLIS simulation is initiated and the user
does not usually need to be aware of this.

Library Search

The SIMetrix library will be searched for any device referenced in a subcircuit call that is not present in
the input netlist. Only devices that are explicitly designated as SIMPLIS models will be recognized in this
search. (Unless “/simulator SIMetrix” is specified at the PreProcessNetlist command line). SIMPLIS
models are identified in the model files using the .SIMULATOR control. The syntax of this control is:

.SIMULATOR SIMPLIS | SIMetrix

The .SIMULATOR control applies to all models that appear after it until the next .SIMULATOR control.
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7.9. Netlist Preprocessor

If the device is found in the library, its text will be entered as if it had appeared in the input netlist.
Currently only subcircuit devices are resolved in this library search. All primitive devices defined using
.MODEL must be defined in the input netlist.

Note also that currently, only the SIMetrix global library will be searched. The .LIB control is not
supported.

Parameters

Parameters may be defined using the .VAR control which has the following syntax:

.VAR parameterName={ parameterExpression }

parameterName may be any alphanumeric sequence and must start with a letter or underscore.
paramterExpression may be any valid SIMetrix expression as detailed in the script reference manual.
String expressions are acceptable. parameterExpression may reference parameters defined in earlier .VAR
controls.

Any part of the netlist following a .VAR control may contain parameter expression enclosed with curly
braces. E.g.

.VAR resval = { 1K }

R1 1 2 {resval * 2}

.VAR may be used inside subcircuit definitions in which case the have local scope. This means that the
parameter definition is only valid within that subcircuit definition. Note that this scope is not inherited by
nested subcircuit definitions. However, parameters defined at the top level have global scope.

Passing Parameters to Subcircuits

Parameters may be passed to subcircuits via the subcircuit call. The syntax is:

Xxxx nodes subname vars: param1=value1 param2=value2 ...

value1, 2 may be constants or an expression enclosed in curly braces. The expression may use values
defined in previous .VAR controls and, if the X line is itself inside a subcircuit definition, values passed to
that definition. The expression may not however, reference other passed parameters on the same X line.
E.g. value2 may not reference param1.

Conditional Lines

The .IF control may be used to define lines that are passed to the output only if specified conditions are
met. The syntax is as follows:

.IF {expression}
netlist lines
...
[.ELSE
netlist lines
...]
.ENDIF

If expression resolves to a non-zero value then the lines up to .ELSE will be output otherwise the lines
between .ELSE and .ENDIF will be output. The .ELSE is optional. .IF/.ELSE/.ENDIF may be nested to
any level.

expression may be any valid arithmetic expression and may refer to previously defined parameters
including those passed through a subcircuit call.
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7.10. Running Monte Carlo and Multi-step Analyses

Looping

The preprocessor may be instructed to output a repeated sequence of lines using the .WHILE control. The
syntax is:

.WHILE {expression} [max_loop_count]
netlist lines
...
.ENDWHILE

The block between .WHILE and .ENDWHILE will be repeated as long as expression is non-zero up to a
maximum of max_loop_count times. If max_loop_count is omitted it takes a default value of 100. max
_loop_count is intended as a safety measure to prevent an endless loop from filling the user’s fixed disk to
its capacity.

7.10 Running Monte Carlo and Multi-step Analyses

The SIMetrix environment has facilities to run multiple SIMPLIS analyses. Facilities to sweep parameter
values and to randomly assign parameters for Monte Carlo are provided.

For more information, please refer to the SIMetrix User’s Manual/SIMPLIS Analysis Modes/Multi-step
and Monte Carlo Analyses.
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Chapter 8

Simplis Data Files

8.1 Overview

As SIMPLIS carries out an analysis, it creates additional data files in the same directory as the input file.
These files are created by SIMPLIS primarily for its own use. It is recommended that everyone browse
through this chapter to get an idea what these data files accomplish and as a result, be able to take
advantage of these data files during various analyses. The section Taking Advantage of Existing Files is
particularly helpful for running time-domain simulations.

In the illustration that follows, the name of the input file is assumed to be “XXXX”. Each data file
generated by SIMPLIS is named “XXXX.extension” where “extension” is a string of characters particular
to the data file.

The version of SIMPLIS supplied with SIMetrix sends its simulation data to SIMetrix which is then
responsible for saving it. This data is usually stored in .sxdat files located in the TEMPDATA directory.

8.2 The Listing Data File

The listing file is automatically generated by SIMPLIS. It is named

XXXX.lst

where “XXXX” is the name of the input file to SIMPLIS. Ordinarily, this listing file is a rehash of the
input file in a more organized manner. If you have elected to specify the EXPAND option in the input file,
additional information illustrating how the subcircuit calls are being expanded will be written to this listing
file.

8.3 Error Message Data File

The error message data file is named

XXXX.err

where “XXXX” is the name of the input file to SIMPLIS. If there is a syntax error detected in the input file
or if a simulation error is encountered, error messages will be recorded in this error message file. You can
examine this error message file and other data files generated by SIMPLIS to determine the cause of the
problem.

SIMetrix automatically displays in the command shell the contents of this file if it exists.
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8.4. The “State of Exit” Data File

8.4 The “State of Exit” Data File

At the end of a time-domain simulation, SIMPLIS always writes out the state of the system under study to
a “State of Exit” file. This data file contains the voltage across each linear capacitor or piecewise-linear
capacitor,

1. The current through each linear inductor or piecewise-linear inductor,

2. The state of each simple switch or simple transistor switch,

3. The segment of operation of each piecewise-linear resistor, and

4. The output logic state of each simple logic gate

The State of Exit data file is written out only if a time-domain analysis has been specified. Traditionally,
this file is named

XXXX.init

where “XXXX” is the name of the input file to SIMPLIS. The “State of Exit” file has been given the file
extension “.init” because it is written in a format such that it can be easily merged into the input file to
provide initial condition(s) for a continued simulation.

Suppose a simulation has been carried out for 200 microseconds and after examining the data you have
decided to run for another 200 microseconds. One approach is to repeat the first simulation with the
original initial conditions by changing the run time to 400 microseconds. This approach has the
disadvantage of repeating the simulation of the first 200 microseconds. On the other hand, if you are not
particularly interested in the waveforms of the first 200 microseconds, the “.init” file can be used to
override the initialization provided in the input file by including the contents of this data file in the input
file. In such a case, the run time of the second simulation only has to be carried out for 200 microseconds
as the “.init” file already contains the state of the system at the end of the first simulation, which is at t =
200 microseconds.

8.5 Switching Instance Data File

When a transient analysis is run, the control statement

.TRAN tstop tsave

instructs SIMPLIS to carry out a time-domain simulation from t=0 to t=tstop. No data will be generated or
saved until the simulation reaches t=tsave. Starting at t = tsave, every switching instant is recorded in a
data file called the “Switching Instance” data file. This data file contains a description of the system under
study and a snap shot of the system at every switching instance from tsave to tstop, inclusively. This data
file is named

XXXX.t1

where “XXXX” is the name of the input file to SIMPLIS. The Switching Instance data file is only
produced for a time-domain analysis

8.6 Time-domain Data Output

During a time-domain simulation, SIMPLIS reads the Switching Instance data file and reconstructs
detailed waveforms from the data stored in the Switching Instance data file. Detailed waveforms are
reconstructed for various print variables for the time interval from the value specified for PSP_START to
the value specified for PSP_END. You are referred to Option Statements on the usage of option statements
to specify values for these two parameters. The waveform data are sent to the SIMetrix front end which is
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8.7. The Topology Information File

responsible for storing and if required plotting the data. This Time-Domain data is only produced for a
time-domain analysis and only if PSP_NPT is specified as an option in the input file.

SIMPLIS also generates a file with the extension .T2 which contains details of the data stored but not the
actual data itself. See example below.

$\$$$\$$$\$$ 1 1006 6simplis DATA FOR PLOTTING, Mon Nov 25 14:00:17
INPUT FILE: demo01
Transient Analysis
7 DATA PTS
3 VARIABLES
0 TIME
1 V(4,0)
2 I(LL)
3 V(CC)

8.7 The Topology Information File

During a time-domain simulation, if the system under study spends a non zero amount of time in a certain
circuit topology, SIMPLIS will save the important information associated with this particular topology in a
file called the Topology Information file. In addition, this file also contains a description of the system
under study and it is named

XXXX.tc

where “XXXX” is the name of the input file to SIMPLIS.

8.8 Taking Advantage of Existing Files

Often, you will make multiple time-domain simulation runs on the same system. After the first simulation
run is finished, the Switching Instance Data file mentioned in Switching Instance Data File and the
Topology Information file outlined above are created. After examining the waveforms from this simulation
run, you may decide to either repeat the simulation with a longer run time or repeat the same simulation
run with a different set of print variables. In either case, there is no change in the system under study and
the Switching Instance Data file and the Topology Information file contain valuable information associated
with the time-domain simulation. In the next simulation run, SIMPLIS can take advantage of the data
stored in these two files and reduce the computation time in the simulation.

Every time SIMPLIS is invoked, it looks for the presence of the Topology Information file, the “XXXX.tc”
file. If this file is present and the circuit it describes matches that of the input file, SIMPLIS can take
advantage of the existing knowledge on the different circuit topologies and the overhead spent in analyzing
each known circuit topology is reduced.

As outlined in Overview, SIMPLIS is a two-pass simulator when it comes to time-domain simulation. The
first pass of the simulation is the regular simulation and it computes the state of the simulation at each
switching instance and saves the data in the Switching Instance Data file – the “XXXX.t1” file. In the
second pass, called the Post-Simulation Processing, or “PSP” for short, detailed waveform data are
reconstructed from the data saved in the Switching Instance Data file. Every time SIMPLIS starts a
time-domain analysis, it looks for the presence of the Switching Instance Data file. If this file is present,
SIMPLIS checks to see if it is usable. This file is considered usable if it describes the same circuit and the
same analyses as defined in the input file. If the Switching Instance Data file is considered usable,
SIMPLIS can skip the first pass of the simulation and directly go to the Post-Simulation Processing phase,
saving a substantial amount of simulation time. Changing the PSP_START, PSP_END, and PSP_NPT
parameters through the option statements is not considered to be a change in the analyses as these
parameters only affect the PSP-phase of the simulation.
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8.9. Switching Instance Data for POP Analysis

Since the Topology Information file and the Switching Instance Data file contain critical data of the
simulation, they have been created with a read-only protection mode to prevent accidental changes being
made to them.

8.9 Switching Instance Data File for the POP Analysis

When the periodic operating point analysis is applied to a system, a data file is generated, named

XXXX.t3

where “XXXX” is the name of the SIMPLIS input file. The periodic operating point analysis is discussed
in detail in Chapter 10. This data file contains a description of the system under study and a snap shot of
the system at every switching instance during a periodic operating point analysis. While this file will not
be directly used by you, it is used by SIMPLIS to generate print/plot file for the Periodic Operating Point
Analysis described in the next section. As a result, this data file is created with a read-only protection
mode.

8.10 Data for the Periodic Operating Point Analysis

POP analysis creates data in exactly the same manner as for time-domain transient analysis. See
Time-domain Data Output.

8.11 Print/Plot File for Frequency-Domain Analysis

When the frequency-domain small-signal analysis is carried out, the resulting data are sent to SIMetrix in
the same way as for transient analysis. The only difference is that small-signal analysis data is complex.

SIMPLIS also creates a .F2 file for small-signal analysis with a similar format to the .T2 file. See
Time-domain Data Output.
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Chapter 9

Simplis-TX Examples

9.1 Overview

Examples are provided in this chapter to help the user get familiar with the syntax of the input file of
SIMPLIS and understand various features of SIMPLIS-TX. Examples from using SIMPLIS-POP and
SIMPLIS-FX are given in Chapter 10 and Chapter 11 respectively. The system studied in these examples
represent a variety of systems encountered in power electronics. Each example is intentionally restricted to
be small to make the illustration concise. For the same reason, the device models in this example have
been kept simple but functionally adequate. These simple device models serve as the basic building blocks
from which more complex models can be formulated.

All the examples in this chapter are installed as “ready to run” SIMetrix schematics under the directory
root\Work\Examples\SIMPLIS\Manual_Examples. The input files shown in this chapter are in fact the
simulation decks as created by SIMetrix but with plotting statements removed.

9.2 Example 1 – Rectifier with RC load

The system under study in this example is the simple rectifier circuit shown in Figure 9.1. The ac voltage
source V1 is a 154-V peak-to-peak 60 Hz sinusoidal voltage source. The variables of interest are the
voltage across the ac voltage source, the voltage across the filter capacitor, and the current through the
diode, which is modeled by the piecewise-linear resistor R1 (!R$R1 in the input file). The input file for the
circuit of Example 1 is shown in Figure 9.2.

The time-domain simulation is carried out for 84 milliseconds, which is slightly longer than five complete
cycles of the 60 Hz ac source. The parameter PSP_NPT is set to 211, instructing SIMPLIS to create the
Time-Domain Print/Plot File with the print variables V(V1), V(C2), and I(R1) and a time resolution of
[(84) / (211 _ 1)] = 0.4 msec.

Waveforms obtained from this simulation are shown in Figure 9.3.
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9.2. Example: Rectifier with RC load

9.1 Example 1: Rectifier with RC Load

9.2 SIMPLIS Input File for Example 1 (as generated by SIMetrix)

* Single RC Source Rectified into a RC Low-Pass Filter
.PRINT ALL
.OPTIONS PSP_NPT=211
.TRAN 84m 0

V1 1 0 SIN VOFFSET=0 APEAK=38.5 FREQ=60 TDELAY=0
+ OFF_UNTIL_DELAY=NO DAMP_COEF=0
C2 3 0 100u IC=0
!R$\$$R1 1 2 R1$\$$TP_SSPWLR IC=1
.MODEL R1$\$$TP_SSPWLR VPWLR NSEG=2 X0=0 Y0=0 X1=1 Y1=0.5U
+ X2=1.1 Y2=1
R2 3 2 1
R3 0 3 100

.END
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9.3. Example: 3-Phase Rectifier with Resistive Load

9.3 Waveforms for Example 1

9.3 Example 2 – 3-Phase Rectifier with Resistive Load

The circuit for Example 2 is a three-phase rectifier with resistive load, as shown in 9.4. It is made up of a
three-phase ac voltage source in a Y-configuration which is rectified into a single load connected to the
neutral line. The three voltage sources are modeled as cosinusoidal voltage sources of the same frequency
with delays equal to 0, 1/3, and 2/3 of the period. The variables of interest are the three line-to-neutral
voltages V(1), V(2), and V(3), and the load voltage V(4). The SIMPLIS input file for the circuit of
Example 2 is shown in 9.5 . Waveforms for these four variables are plotted in 9.6.
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9.3. Example: 3-Phase Rectifier with Resistive Load

9.4 Three-phase Rectifier with Load

9.5 Input File for Example 2 (as generated by SIMetrix)

* 3-Phase AC Voltage Source In A Y-Configuration
.PRINT ALL
.OPTIONS PSP_NPT=1001
.TRAN 2m 0
V1 1 0 COS VOFFSET=0 APEAK=5 FREQ=1k PDELAY=0
+ OFF_UNTIL_DELAY=NO DAMP_COEF=0
V2 3 0 COS VOFFSET=0 APEAK=5 FREQ=1k PDELAY=120
+ OFF_UNTIL_DELAY=NO DAMP_COEF=0
V3 4 0 COS VOFFSET=0 APEAK=5 FREQ=1k PDELAY=240
+ OFF_UNTIL_DELAY=NO DAMP_COEF=0
RL 2 0 50
!R$\$$R1 1 2 R1$\$$TP_SSPWLR IC=1
.MODEL R1$\$$TP_SSPWLR VPWLR NSEG=2 X0=0 Y0=0 X1=1 Y1=5u
+ X2=1.1 Y2=1
!R$\$$R2 3 2 R2$\$$TP_SSPWLR IC=1
.MODEL R2$\$$TP_SSPWLR VPWLR NSEG=2 X0=0 Y0=0 X1=1 Y1=5u
+ X2=1.1 Y2=1
!R$\$$R3 4 2 R3$\$$TP_SSPWLR IC=1
.MODEL R3$\$$TP_SSPWLR VPWLR NSEG=2 X0=0 Y0=0 X1=1 Y1=5u
+ X2=1.1 Y2=1
.END
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9.4. Example: Op-amp with Saturation

9.6 Waveforms for Example 2

9.4 Example 3 – Operational Amplifier with Saturation

The system under study in this example is a simple operational amplifier circuit driven to saturation by a
sinusoidal input voltage. 9.7 (a) represents the circuit and 9.7 (b) is the piecewise-linear model of the
system.

The operational amplifier is modeled by the input resistance RIN between its differential inputs, the
voltage-controlled voltage source EOP, the output resistance ROUT, and the piecewise-linear resistor
!RSAT. The purpose of the PWL resistor R1 (!R$R1 in the input file) is to model the saturation of the
operational amplifier whenever the output voltage rises above 5V or drops below -5V. Placing the PWL
resistor R1 across the output of the opamp is one of many possible ways to model the saturation of an
operational amplifier. The variables of interest are the input sinusoidal voltage, the voltage across the
differential inputs of the opamp, and the output of the opamp. The SIMPLIS input file defining the
piecewise-linear model for the circuit of Example 3 is given in 9.8 and waveforms obtained from this
simulation are shown in 9.9 .
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9.4. Example: Op-amp with Saturation

9.7a Example 3 Operational Amplifier with Saturation Circuit Diagram

9.7b Example 3 Operational Amplifier with Saturation - Piecewise-linear Equivalent Cir-
cuit

9.8 Input File for Example 3

* Saturation of an Operational Amplifier
.PRINT ALL
.OPTIONS PSP_NPT=1001
.TRAN 2m 0
X$\$$U1 2 0 1 opamp
V1 3 0 SIN VOFFSET=0 APEAK=1 FREQ=1k TDELAY=0
+ OFF_UNTIL_DELAY=NO DAMP_COEF=0
R1 1 3 1K
R2 2 1 10k
.SUBCKT opamp 3 4 2
.NODE_MAP VINN 2
.NODE_MAP VINP 4
.NODE_MAP VOUT 3
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9.5. Example: Unregulated Converter

RIN 4 2 1Meg
EOP 1 0 4 2 1Meg
ROUT 3 1 50
!R$\$$R1 3 0 R1$\$$TP_SSPWLR IC=1
.MODEL R1$\$$TP_SSPWLR VPWLR NSEG=3 X0=-5.1 Y0=-1MEG
+ X1=-5.0 Y1=-1U X2=5.0 Y2=1U X3=5.1 Y3=1MEG
.ENDS opamp
.END

9.9 Waveforms for Example 3

9.5 Example 4 – Unregulated Converter

Shown in 9.10 is the schematic of a simple current step-up (buck) converter operating under a
fixed-frequency control law. This converter is not regulated by closed-loop control and the duty ratio of the
transistor Q1 is determined by comparing the fixed reference voltage of 2.5 V to the output of the
triangular function generator. The SIMPLIS input file describing this converter is shown in 9.11.

Since the transistor Q1 is driven to behave like a controlled switch, it is modeled by a simple transistor
switch with the LEVEL parameter set to 1. For the rest of the power stage of this converter, the diode is
modeled by the piecewise-linear resistor R1 (!R$R1 in the input file), the energy -storage inductor by ideal
inductance L and winding resistance RX, the output capacitor by ideal capacitor C and equivalent series
resistance RC, and the load by the resistance RL.

The current through the inductor L is initialized to a value of zero at the start of the simulation to represent
operation of the converter in the discontinuous-mmf mode. Waveforms obtained from this simulation are
displayed in 9.12.
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9.5. Example: Unregulated Converter

9.10 Unregulated Converter

9.11 Input file for Example 4

* Fixed-Frequency Unregulated Current Step-Up Converter
.PRINT ALL
.OPTIONS PSP_NPT=201
.TRAN 50u 0
X$\$$U2 6 0 8 9 SIMPLIS_COMP$\$$1
V_TRI 9 0 TRI V1=0 V2=5 FREQ=100k DRATIO=500m DELAY=0
+ OFF_UNTIL_DELAY=NO
VREF 8 0 2.5
C 5 7 50u IC=28
L 4 5 20u IC=0
VI 2 0 40
RC 7 0 50m
Rl 5 0 100
Q1 2 3 6 0 Q1$\$$TP_VCQ IC=CLOSE
.MODEL Q1$\$$TP_VCQ VCQPOS VSAT=700m RSAT=100m ROFF=10Meg GAIN=10
+ TH=2.5 HYSTWD=100u LOGIC=POS LEVEL=1
!R$\$$R1 0 3 R1$\$$TP_SSPWLR IC=1
.MODEL R1$\$$TP_SSPWLR VPWLR NSEG=2 X0=0 Y0=0 X1=0.7 Y1=10U
+ X2=0.8 Y2=1.00001
RX 4 3 10m
.SUBCKT SIMPLIS_COMP$\$$1 201 100 101 102
!DCOMP 201 100 101 102 MCOMP IC=1
.MODEL MCOMP COMP RIN=1e+007 ROUT=50 VOL=0 VOH=5
+ HYSTWD=1e-006 DELAY=0
.ENDS SIMPLIS_COMP$\$$1
.END
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9.6. Example: Regulated Converter

9.12 Waveforms for Example 4

9.6 Example 5 – Regulated Converter

The diagram shown in fig. 9.13 is the schematic of a regulated current step-up (buck) converter operating
under a fixed-frequency control law.

The modeling of the switching transistor, the diode, the energy-storage inductor, the output-filter capacitor,
and the load of the power stage is similar to the modeling of the corresponding components in Example 4
and is not elaborated on here. Again, with the transistor modeled as a simple controlled switch, the
base-drive shown in 9.13 does not need to be modeled in the input file as the output of the comparator can
directly control the simple transistor switch.

The error amplifier in the controller is shown separately in 9.14 (a) and its piecewise-linear equivalent is
shown in 9.14 (b). The operational amplifier is modeled with an input resistance RIN between its
differential inputs and the voltage- controlled voltage source EOP at its output. 9.14 illustrates how an
opamp circuit can be modeled by a simple network if the opamp is not driven into saturation. More
sophisticated models for the operational amplifier can be built upon this basic model.

The input file describing this converter is shown in 9.15. In this example, we are interested in the
steady-state waveforms of the sawtooth voltage V(11), the voltage V(RL) across the load and the current
I(L) through the inductor.
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9.6. Example: Regulated Converter

9.13 Example 5 Regulated Converter

9.14a Error Amplifier Circuit
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9.6. Example: Regulated Converter

9.14b Piecewise-linear Equivalent

9.15 Input File for Example 5 (generated by SIMetrix)

* Regulated Converter
.PRINT ALL
.OPTIONS PSP_NPT=201
.TRAN 50u 0
X$\$$U2 11 13 10 opamp
VSAW 12 0 SAW V1=0 V2=5 FREQ=100k DELAY=0 OFF_UNTIL_DELAY=NO
X$\$$U1 6 0 11 12 SIMPLIS_COMP$\$$1
VREF 13 0 2.5
L 4 5 40u IC=0.14
VI 2 0 40
R12 0 8 10k
R13 8 10 10k
RC 7 5 50m
RL 5 0 10
R11 8 5 40k
C1 11 9 100n IC=-832.277m
R14 10 9 2k
C14 9 10 1n IC=274.1u
CC 7 0 50u IC=12.48
Q1 2 3 6 0 Q1$\$$TP_VCQ IC=OPEN
.MODEL Q1$\$$TP_VCQ VCQPOS VSAT=700m RSAT=100m ROFF=10Meg
+ GAIN=10 TH=2.5 HYSTWD=100u LOGIC=POS LEVEL=1
!R$\$$R1 0 3 R1$\$$TP_SSPWLR IC=1
.MODEL R1$\$$TP_SSPWLR VPWLR NSEG=2 X0=0 Y0=0 X1=0.7 Y1=10U
+ X2=0.8 Y2=1.00001
RX 4 3 10m
.SUBCKT SIMPLIS_COMP$\$$1 201 100 101 102
!DCOMP 201 100 101 102 MCOMP IC=1
.MODEL MCOMP COMP RIN=1e+007 ROUT=50 VOL=0 VOH=5
+ HYSTWD=1e-006 DELAY=0
.ENDS SIMPLIS_COMP$\$$1
.SUBCKT opamp 2 3 1
.NODE_MAP VINN 1
.NODE_MAP VINP 3
.NODE_MAP VOUT 2
RIN 3 1 5Meg
EOP 2 0 3 1 1Meg
.ENDS opamp
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9.7. Example: Saturable Inductor

.END

9.16 Waveforms for Example 5

9.7 Example 6 – Saturable Inductor

Depending on the system design, a magnetic element may be intentionally or unintentionally driven into
saturation during transient or during steady-state operation. This example illustrates the usage of
piecewise-linear (PWL) inductors in the input file. The system under study is shown in fig. 9.17 (a), which
comprises of a sinusoidal voltage source driving a resistor in series with a saturable inductor. Fig 9.17 (b)
shows the piecewise-linear flux linkage versus current characteristic of the saturable inductor. The input
file for this circuit is shown in 9.18.

The saturable inductor is modeled by the piecewise-linear inductor L1 (!L$L1 in the input file), with the
flux linkage entered in units of weber-turns. The variables of interest are the input voltage V(VI), plus the
voltage V(L1) and the current I(L1) of the PWL inductor. The simulated waveforms for these variables are
shown in fig 9.19.
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9.7. Example: Saturable Inductor

9.17a The circuit diagram

9.17b Flux-linkage vs. current characteristics of inductor

9.18 Input file for Example 6

* Cosine Wave Driving A Resistor And A Saturable Inductor

VI 1 0 COS VOFFSET=0 APEAK=75 FREQ=10K
.PRINT ALL
.OPTIONS PSP_NPT=201
.TRAN 200u 0
V1 1 0 COS VOFFSET=0 APEAK=75 FREQ=10k TDELAY=0
+ OFF_UNTIL_DELAY=NO DAMP_COEF=0
!L$\$$L1 2 0 L1$\$$TP_SSPWLL
.MODEL L1$\$$TP_SSPWLL PWLL NSEG=3 X0=-0.1 Y0=-500.5U
+ X1=-0.05 Y1=-500U X2=0.05 Y2=500U X3=0.1 Y3=500.5U
R1 2 1 10
.END
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9.8. Example: SCR with RL Load

9.19 Waveforms for Example 6

9.8 Example 7 – SCR with RL Load

The system studied in this example, as shown in fig. 9.20, is a sinusoidal voltage source rectified into an
R-L load through a silicon controlled rectifier.

In this example, the SCR is modeled by the series combination of the simple switch S1 and the
piecewise-linear resistor !R2, as shown in fig 9.21. The input file for this circuit is shown in fig 9.22. The
comparator U2 (!D$U2 in the input file), the SR Flip Flop U1 (!D$U1 in the input file), and the elements
E1, H1, and V5 together form a network that models the switching of the SCR. When a sufficient gate
current is applied between the gate and the cathode, causing the voltage across the non-inverting input of
U2 to exceed 2.5 V, the output of U2 will rise to approximately 5 V, thus setting the SR Flip Flop, which in
turn causes the switch S1 to be closed. When S1 is closed, the model characteristic from anode to cathode
is the series combination of a small resistance of the switch and a diode. On the other hand, if the SR flip
flop is reset, the switch S1 will be opened, and the model characteristic from anode to cathode looks like a
large resistor in series with a diode. The flip flop is reset when the voltage across its reset input, which is
equal to the sum of the voltages across E1, H1, and V5, exceeds 2.500001 V. This situation occurs when
the gate signal is absent and the current through the SCR is negative. The presence of E1 makes sure that
the reset input does not reach its threshold value of 2.500001 V whenever there is a gate signal present. E1
accomplishes this by having its output equal to 500 V whenever the output of U2 reaches 5 V.

The variables of interest are the input voltage V(VI), the signal voltage V(VS), the current I(L1) through
the inductor, and the voltage V(SCR) across the SCR. A differential voltage probe has been added to plot
the latter. The waveforms associated with these variables as obtained from the simulation are shown in fig.
9.23.

114
SIMPLIS Reference Manual



9.8. Example: SCR with RL Load

9.20 Example 7: A silicon-controlled rectifier with series R-L load.

9.21 Piecewise-linear model of the SCR in terms of SIMPLIS elements

9.22 Input File for Example 7 (generated by SIMetrix)
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9.8. Example: SCR with RL Load

* Sine Wave Driving A R-L Load Through A SCR

.PRINT ALL

.OPTIONS PSP_NPT=201

.TRAN 20m 0
VS 1 0 PUL V1=0 V2=1 FREQ=100 T_RISE=0 T_FALL=0 PWIDTH=400u
+ DELAY=1.1m OFF_UNTIL_DELAY=NO
X$\$$SCR 4 2 3 scr1
L1 3 5 25m IC=0
E$\$$Probe2$\$$TP_DIFFPRB 6 0 4 3 1
RL 5 0 40
G1 3 2 1 0 1m
.SUBCKT scr1 12 11 10
.NODE_MAP A 12
.NODE_MAP G 11
.NODE_MAP K 10
X$\$$U3 2 5 10 1 4 SIMPLIS_SRFF$\$$1
V5 4 7 2.500001
X$\$$U1 1 10 11 3 SIMPLIS_COMP$\$$2
H1 7 9 VH1$\$$TP_CCVS -1
VH1$\$$TP_CCVS 8 10 0
E1 9 10 1 10 -100
VTH 3 10 2.5
!R$\$$R2 6 8 R2$\$$TP_SSPWLR IC=1
.MODEL R2$\$$TP_SSPWLR VPWLR NSEG=2 X0=0 Y0=0 X1=1 Y1=1U
+ X2=1.1 Y2=2.000001
S1 12 6 2 10 S1$\$$TP_SSVSW IC=Open
.MODEL S1$\$$TP_SSVSW VCSW ROFF=10Meg RON=10u LOGIC=POS
+ TH=2.5 HYSTWD=20u
.SUBCKT SIMPLIS_COMP$\$$2 201 100 101 102
!DCOMP 201 100 101 102 MCOMP IC=0
.MODEL MCOMP COMP RIN=5000 ROUT=50 VOL=0 VOH=5
+ HYSTWD=0.002 DELAY=0
.ENDS SIMPLIS_COMP$\$$2
.SUBCKT SIMPLIS_SRFF$\$$1 201 202 100 101 102
!D_SIMPLIS_SRFF 201 202 100 101 102 MSRFF IC=0
.MODEL MSRFF SRFF RIN=1e+007 ROUT=50 VOL=0 VOH=5
+ HYSTWD=2e-006 DELAY=0 TH=2.5 LOGIC=POS
.ENDS SIMPLIS_SRFF$\$$1
.ENDS scr1
.END
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9.8. Example: SCR with RL Load

9.23 Waveforms for Example 7
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Chapter 10

Simplis-POP

10.1 Overview

In the analysis of a switching piecewise-linear system, the steady-state solution is essential. For example,
in the study of the line/load regulation of a regulated switching power system, the relevant information is
the steady-state load voltage over a range of line/load conditions. Although carrying important information
in its own right, the transient information on how the system settles to the new steady-state under the new
line/load condition is not the focus of such a study. To carry out such a study, the load voltage is measured
after the system has settled to new steady-state operations under new line/load conditions. Depending on
the damping and the regulation circuitry of the system, it may take the system hundreds to thousands of
switching cycles before settling to a new steady-state operation after each change in the line/load
condition. While carrying out such a study with a brute-force simulation is possible, it can be
time-consuming. Hence, there is a need for a special analysis tool that can “accelerate” the convergence of
the system towards its steady-state operating condition without going through the actual transient.

Another example where the steady-state operation of a switched piecewise-linear system is essential is in
the study of the load transient of a regulated switching power system. In such a study, the transient
experienced by the system, in response to a load change, is monitored. When this study is carried out
through simulation, one must initialize the circuit simulation to the initial steady-state solution of the
system before the load change is initiated. Without using a steady-state solution to start the simulation, the
transient obtained will be different from the transient measured in the laboratory.

A special algorithm for speeding up the computation of the steady-state solution of switched
piecewise-linear systems have been incorporated into SIMPLIS as a special analysis tool. While it is
mathematically more challenging and computationally more intensive, the computation of the steady-state
solution of a switched system is conceptually quite similar to finding the DC operating point of a non-
switching system under only DC excitations. In both cases, we are interested in finding the operation of
the system in the absence of an external stimulus. Since the term “Operating Point Analysis” has been
traditionally and widely used as the name for a DC operating-point analysis, the name “Periodic Operating
Point Analysis,”(POP) is given to this special algorithm for speeding up the computation of the
steady-state solution of switched piecewise-linear systems that are periodically driven or self-oscillating.

The Periodic Operating Point Analysis tool in SIMPLIS is able to speed up the convergence to the
steady-state solution of a switched piecewise-linear system that is either self-oscillating or driven by one
or more periodic sources that are commensurate in their periods. To invoke such an analysis, the user only
needs to add a few lines in the input file. Statements Relating to POP Analysis explains in detail the format
of the input statements related to the Periodic Operating Point analysis. Synopsis of the Periodic Operating
Point Analysis explains what happens during a Periodic Operating Point analysis. After reading this
section, a user will understand the internal workings of this analysis tool and, as a result, will be able to
use the analysis tool more productively. An example in Example of Applying the POP Analysis Tool
illustrates the application of the POP analysis to a closed-loop regulated switching power system
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10.2. Statements Relating to POP Analysis

10.2 Statements Relating to POP Analysis

The statements relating to the Periodic Operating Point analysis can be all classified as control statements
of the type defined in Chapter 6. An analysis statement to invoke the POP analysis and three option
statements are associated with the Periodic Operating Point analysis.

.POP Statement for POP Analysis

The .POP statement instructs SIMPLIS to perform a Periodic Operating Point analysis on the system under
study. Just like any other analysis statement, the .POP statement can only appear within the scope of
definition of the main circuit. In addition, there can be no more than one .POP statement in an input file.
The format for the .POP statement is

.POP TRIG_GATE=gate_name TRIG_COND={0_TO_1|1_TO_0}
+ MAX_PERIOD=max_period
TD_RUN_AFTER_POP_FAILS=tran_after_pop_fail

where

.POP is the four-character keyword “.POP”.

TRIG_GATE= is the ten-character keyword “TRIG_GATE=”.

gate_name is the device name of a defined logic gate. This device is considered the
triggering gate of the POP analysis. Together with the parameter value of
TRIG_COND, it determines the condition that constitutes the start of a new
switching cycle in the POP analysis.

TRIG_COND= is the ten-character keyword “TRIG_COND=”.

0_TO_1 is the six-character keyword “0_TO_1”.

1_TO_0 is the six-character keyword “1_TO_0”.

MAX_PERIOD= is the eleven-character keyword “MAX_PERIOD=”.

max_period is a positive floating-point number assigned to the parameter MAX
_PERIOD.

tran_after_pop
_fail

Controls behaviour if the POP analysis fails to converge. This has three
modes of operation as follows:

tran_after_pop_fail = 0: Display error message then abort.

tran_after_pop_fail = -1: Start a transient analysis with a run time equal to
100 x max_period (see above).

tran_after_pop_fail = t, t > 0: Start a transient analysis with a run time
equal to t.

See Behaviour of POP Analysis after POP Convergence Failure for more
details of this feature.

The .POP statement must be the first analysis statement among all types of analyses statements specified in
an input file. Upon reading the .POP statement, SIMPLIS performs a Periodic Operating Point analysis of
the system. If the Periodic Operating Point analysis is successful, SIMPLIS will perform the next analysis
specified in the input file. If the Periodic Operating Point analysis is not successful, SIMPLIS will print
out an error message and exit.
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10.2. Statements Relating to POP Analysis

Definition of the Start of A Switching Cycle

During a Periodic Operating Point analysis, SIMPLIS performs a sequence of time-domain transient
analyses on the system. These transient analyses are invisible to the user. Each time-domain transient
analysis is stopped when the operation of the system reaches the start of a new switching cycle. The user
can define the condition constituting the start of a switching cycle through the TRIG_GATE and TRIG
_COND parameters in the .POP statement. Let us examine the two .POP statements below:

.POP TRIG_GATE=!D1 TRIG_COND=0_TO_1 MAX_PERIOD=100U

.POP TRIG_GATE=X1.!D1 TRIG_COND=1_TO_0
+ MAX_PERIOD=100U

The first .POP statement defines the start of a switching cycle as the time instant when the output of the
logic gate named !D1 switches from logic 0 to logic 1. The second .POP statement defines the triggering
gate as the logic gate named !D1 in the subcircuit referred to as X1 in the main circuit, and it defines the
start of a switching cycle as the instant when the output of the triggering gate switches from logic 1 to
logic 0.

The two .POP statements above are shown here for illustration purposes. Only one .POP statement can
appear in a SIMPLIS input file. The second .POP statement also demonstrates that the triggering gate is
not restricted to the logic gates defined in the main circuit. It can be any logic gate defined in the input file.

Definition of the Start of A Switching Cycle for a Driven System

In a driven system, the driving periodic source is a good candidate to define the start of a switching cycle.
Fig 10.1(a) shows a small section of a hypothetical circuit driven by a periodic triangular source V1 whose
minimum and maximum voltages are, 1V and 3V, respectively. The triggering gate in this example is the
comparator !D1 shown in the figure. Since V1 is periodic, the choice of the start of a cycle is arbitrary. For
example, let us use the instant when the source value is decreasing and it is equal to 1.001V as the instant
signifying the start of a switching cycle. The statements associated with the triangular source, the
triggering gate, and the periodic operating point analysis for this example are:

V1 1 0 TRI V1=1 V2=3 FREQ=10K DRATIO=0.98
+ DELAY=0 OFF_UNTIL_DELAY=NO
!D1 5 0 1 2 M1 IC=0
.MODEL M1 COMP RIN=10MEG ROUT=8 HYSTWD= 2M
+ VOH=5 VOL=0
V2 2 0 DC 1.002
.POP TRIG_GATE=!D1 TRIG_COND=1_TO_0 MAX_PERIOD=300U

The model statement states that the output of the comparator is equal to logic 1 whenever the voltage at the
non-inverting input is 1 mV above that of the inverting input, and that the output is equal to logic 0
whenever the voltage at the non-inverting input is 1 mv below that of the inverting input. Since the voltage
at the inverting input of !D1 is a DC voltage source of 1.002 V, this implies that the output of !D1 is equal
to logic 1 when the voltage of V1 exceeds 1.003 V, and it is equal to logic 0 when the voltage of V1 drops
below 1.001 V. When the voltage of V1 is between 1.001 V and 1.003 V, the output state of !D1 remains
unchanged. The diagram in fig 10.1(b) illustrates the relationship between the output state of !D1 and the
voltage of source V1. The figure shows that the output of !D1 will have a logic 1 to logic 0 transition
whenever the voltage of V1 is decreasing and equal to 1.001 V.

If there are multiple periodic sources driving the system, the periodic operating point analysis tool can be
applied only if these sources are commensurate in their periods. In this case, the switching cycle should be
defined with a period equal to the least common multiple of the periods of all periodic sources.
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10.2. Statements Relating to POP Analysis

10.1 (a) A periodic triangular source, a battery, and a comparator used to define the start
of a switching cycle, and (b) Output of the comparator in relationship to the differential
voltage V(1,0).

Definition of the Start of A Switching Cycle for a Self-Oscillating System

In the case of a self-oscillating system, the start of a switching cycle should be defined to coincide with a
major switching event such as the on/off switching of the main power transistors(s) of a self-oscillating
converter. Fig 10.2 (a) shows a small section of a hypothetical self-oscillating switching system. The main
switching transistor Q1 is controlled by the control unit U1 through the base drive circuit B1. The output
level of U1 is equal to 12 V and 0 V, respectively, when it is trying to switch the transistor Q1 on and off.
In this case, the start of a switching cycle is best defined in terms of the transition of the output of U1. The
comparator !D2 in this figure serves this purpose and the input statements defining !D2 and the .POP
analysis may look as follows:

!D2 101 0 102 103 M2 IC=0
.MODEL M2 COMP RIN=10MEG ROUT=8 HYSTWD=10
+ VOH=5 VOL=0
V6 103 0 DC 6
.POP TRIG_GATE=!D2 TRIG_COND=0_TO_1 MAX_PERIOD=200U
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10.2. Statements Relating to POP Analysis

With these input statements, the output of the logic gate !D2 is equal to logic 1 and logic 0, respectively,
when the output of U1 is above 11 V and below 1 V. When the output of U1 is between 1 V and 11 V, the
output state of !D2 remains unchanged. Fig 10.2 (b) illustrates the relationship between the output state of
U1 and the output state of !D2. From this figure, it can be deduced that the start of a switching cycle is
now recognized to occur when the output of U1 is rising and equal to 11 V. The output of U1 as shown in
Fig 10.2 (b) has finite-time transitions when it switches between 0 V and 12 V. If U1 is a SIMPLIS logic
gate, we can use U1 instead of an additional logic gate as the triggering gate for the POP analysis.

10.2 (a) A sample circuit used to define the start of a switching cycle for a variable-
frequency switching system, and (b) Output of the comparator !D2 in relationship to the
waveform of the voltage V(102,0).

Definition of the Maximum Period

Depending on how the triggering gate and triggering condition are defined and depending on the capacitor
voltages and inductor currents of the system, it is possible that the system either takes a very long time or
is never able to reach a condition that triggers the start of a new switching cycle. Such a condition can
occur at the start of the periodic operating point analysis or in the middle of a periodic operating point
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analysis. Since the triggering condition never occurs, one of the time-domain transient analyses mentioned
in 10.2.1.1 may run forever. To avoid such a situation, the maximum simulation time for all POP
time-domain transient analyses is set to the numerical value of the maximum period parameter. For
example, a .POP statement such as

.POP TRIG_GATE=!D2 TRIG_COND=0_TO_1 MAX_PERIOD=500U

instructs SIMPLIS to carry out each of these transient analyses for a maximum duration of 500
microseconds. If the simulation time of a POP transient analysis reaches 500 microseconds without
triggering the start of a new switching cycle, SIMPLIS will print out an error message and exit.

For a driven system, the maximum period should be set to at least three times the expected period. For a
self-oscillating system, the maximum period should be set to about 10 times the longest period expected.

There are several reasons that SIMPLIS may fail to find a triggering condition for the system under study
within the set maximum period. One is an error in the definition of the triggering condition. Given
correctly defined triggering conditions, it is also possible that the transients resulting from the initial
conditions specified for the system would prevent the system from reaching the triggering condition within
the set maximum period. Usually, a regular time-domain transient analysis would reveal the reasons that
the system failed to trigger the start of a new switching cycle.

Behaviour of POP Analysis after POP Convergence Failure

There are two choices of action that SIMPLIS will take when POP fails to converge. These are:

1. Abort the run and output an error message. The error is written to a file but will also be displayed in
the command shell message box. This action is taken if the .POP parameter TD_RUN_AFTER
_POP_FAILS is set to zero.

2. Start a time-domain (transient) analysis. The initial conditions for this time-domain analysis will be
exactly the same as the initial conditions used for the POP run and will continue for a period
controlled by the TD_RUN_AFTER_POP_FAILS parameter on the .POP line. See .POP Statement
for POP Analysis for details.

If a normal time-domain analysis had been specified to proceed after POP (for example, because a
load transient study was being performed), then this time-domain analysis will proceed normally as
if the POP analysis had converged successfully. This mode of operation makes it possible to study
the load or line transient behaviour of systems for which POP convergence is difficult. Examples are
systems running at very light load whereby they enter a pulse frequency mode of operation. Such
systems do not have a well-defined steady state which makes POP convergence almost impossible.
But by running a long enough time domain analysis before applying load or line stimuli, a
near-steady-state condition may be reached.

If no time-domain analysis had been specified after the POP analysis, the data generated during the
additional time-domain analysis will be saved so that a diagnosis of the causes of POP convergence
failure may be performed.

Options Associated with POP Analysis

There are five options associated with the periodic operating point analysis and they can be specified
through the .OPTIONS statement explained in Option Statements. The options are specified in the form of

.OPTIONS opt1 opt2 ...

where opt1, opt2, and ..., are various options recognized by SIMPLIS. The five options associated with the
periodic operating point analysis and their meanings are listed below.
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POP
_SHOWDATA

Shows the progress of the periodic operating point analysis. The default is
not to show the progress. In general, this option is turned on as a debugging
aid if a POP analysis fails.

POP_ITRMAX=n Sets the maximum number of iterations for the periodic operating point
analysis.

“POP_ITRMAX=” is the eleven-character keyword “POP
_ITRMAX=”.

n is a positive integer between 1 and 100. The default value for n is
20.

POP
_CONVERGENCE=value

Sets the convergence criteria for the periodic operating point analysis. The
convergence criteria is satisfied when the relative change in each state vari-
able, between the start and end of a switching cycle, is less than this param-
eter.

“POP_CONVERGENCE=” is the eleven-character keyword “POP
_CONVERGENCE=”.

value is a positive floating point number between 1.0e-06 and 1.0e-14, in-
clusive. The default value for n is 1.0e-14.

Note: During the POP analysis, the maximum relative change in the state
variables is reported in percentages, while the POP_CONVERGENCE pa-
rameter is entered in actual value.

POP_USE_TRAN
_SNAPSHOT

This option instructs POP to take advantage of the last data point of a pre-
vious transient simulation, assuming the circuit and the initial conditions
remained the same between the two simulation runs.

This option does not take on any value. It is either turned ON or turned
OFF. If it is turned ON, the POP analysis will use the last data point of a
previous transient simulation as the initial condition to start the POP anal-
ysis. Usually this leads to a faster POP analysis.

Example:

.OPTIONS POP_USE_TRAN_SNAPSHOT

POP_OUTPUT
_CYCLES=n

Number of cycles of steady-state POP Data to show. After a successful POP
analysis, SIMPLIS will generate the steady-state time-domain waveforms
for an integral number switching cycles.

If set, the option value must be a positive integer between 1 and 16, inclu-
sively.

If this option is not set, it defaults to 5.

Example:

.OPTIONS POP_OUTPUT_CYCLES=3

When the POP_SHOWDATA option is turned on, a print/plot file named “XXXX.t4”, where “XXXX” is
the name of the input file, is generated during the periodic operating point analysis. The format of this
print/plot file is the same as that described for the “TIME-DOMAIN PRINT/PLOT FILE”, or the
“XXXX.t2” file, in Time-domain Data Output. It contains columns of all print variables versus the time
variable. The user is reminded that the print variables are specified through the .PRINT statement as
outlined in Control Statements for Printing Variables. The data in this data file can be plotted to reveal the
progress of the POP analysis. More will be discussed on this data file in the next section.

The POP_ITRMAX option puts a limit on the number of iterations of the periodic operating point analysis
that will be carried out by SIMPLIS. When the periodic operating point analysis fails to converge to a
steady-state solution after this limit is reached, SIMPLIS prints out an error message and exits.
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10.3 Synopsis of the Periodic Operating Point Analysis

As pointed out earlier, the periodic operating point analysis must be the first analysis specified in an input
file. As a result, the initial capacitor voltages and initial inductor currents at the start of the periodic
operating point analysis are the same as those specified in the device statements and any overriding initial
conditions supplied in the .INIT statements. Then, the periodic operating point analysis tool carries out a
sequence of time-domain transient simulation on the system. The actions of the periodic operating point
analysis are summarized by the flow chart in Fig 10.3.

The transient analysis shown in Fig 10.3 is carried out indefinitely until the start of a new switching cycle
is reached or until the value of the time variable has reached the parameter value of the maximum period
set in the .POP statement. If the transient analysis fails to reach a condition to trigger the start of a new
switching cycle before the maximum period is reached, an error message similar to the one shown below is
either printed on the screen or to an error file. After the error message has been printed, SIMPLIS aborts
its execution.

Periodic Operating-Pt Analysis:
Reaching a time duration equal to
`3.00000e-04' without registering the
triggering condition that defines
the start of a period. Check your
circuit and/or initial conditions.

If the transient analysis is able to reach a condition triggering the start of a new switching cycle, the next
task to be performed is to determine whether the system has reached steady-state operation. This is
accomplished by finding the difference between the values of each capacitor voltage and inductor current
at the start and end of the finished transient analysis. If the differences are small enough to be negligible
for all capacitors and inductors, the system is considered to be in steady-state operation and the periodic
operating point analysis is considered successful and it is stopped.

If the system is not considered to be in steady-state operation, the periodic operating point analysis tool
applies a proprietary algorithm to predict what the values of the capacitor voltages and inductor currents at
the start of a switching cycle ought to be had steady-state operation condition been reached. After this
prediction phase, another transient analysis is initiated and the whole algorithm is repeated until either
steady-state condition has been reached or the maximum iteration limit as set in the POP_ITRMAX option
has been reached. If the maximum iteration limit is reached, an error message similar to the following is
either printed on the screen or to an error file and execution of SIMPLIS is halted.
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10.3 Actions carried out by the periodic operating point analysis tool

Periodic Operating-Pt Analysis:
Unable to find a periodic operating
point after 20 attempts. Check your
input file for errors. A change in
the initial condition may be necessary.

During each iteration, or pass, of the algorithm shown in Fig 10.3, the periodic operating point analysis
tool provides a glimpse of the progress of the analysis by printing out short messages on the screen. The
messages on the screen from a typical successful periodic operating point analysis will be similar to the
following:

PERIODIC OPERATING-POINT ANALYSIS
PASS 1: 6.545582e+00
PASS 2: 2.848722e-01
PASS 3: 5.397469e-02
PASS 4: 5.006216e-03
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PASS 5: 6.267872e-05
PASS 6: 1.004039e-08
PASS 7: 1.173411e-14

The number next to each pass index represents a measure of the maximum percentage difference between
the values of each capacitor voltage and inductor current at the start and end of the corresponding transient
analysis. Thus, at the end of the 4th transient analysis in this example, the error between the initial and
final state vectors is less than 0.005%. The periodic operating point analysis tool considers steady-state
operation has been reached when this percentage difference is smaller than the convergence parameter
POP_CONVERGENCE, which has a default value of 1x10 -14, or 1x10 -12 %.

The Time Variable During POP Analysis

In the periodic operating point analysis, our major goal is to find the steady-state operation of the system.
How the system reaches the eventual steady-state operation from the original initial state is not as
important. In addition, the action carried out by the prediction phase shown in fig 10.3 does not correspond
to any real operation experienced by the system. Hence it is impossible to assign a true value to the time
variable during a POP analysis. With no other better choices and without any loss of generality, we can
reset the time variable at the exit of a POP analysis to its original value at the entry of the POP analysis.
Since the POP analysis is the first analysis allowed, this means that the time variable is artificially reset to
0.0 at the end of a POP analysis. Consequently, if there is a time-domain transient analysis immediately
following a POP analysis, the time variable for that time-domain transient simulation will start at 0.0 and
the time variable will advance forward as usual in the regular time-domain transient analysis.

How POP Deals with Time Varying Sources

At the entry of a periodic operating point analysis, all time varying sources are classified as either periodic
or aperiodic. Sawtooth, triangular, square, and pulse sources are always considered to be periodic. A
sinusoidal or cosinusoidal source is considered to be periodic if its damping coefficient is equal to 0.0,
otherwise it is considered as aperiodic. Exponential pulse sources and piecewise-linear sources are always
considered to be aperiodic. Periodic sources are left unchanged during a POP analysis, i.e. they remain as
sources with time-varying source values. The treatment of the aperiodic sources during a POP analysis,
however, are quite different. They are turned into DC sources during a POP analysis, with each source
held constant at its value just before the entry of the POP analysis.

Aperiodic Sources

Aperiodic sources are held at a constant value during the POP analysis. This is necessary in order to find
the periodic operating point. After the POP analysis has finished, the source values of the aperiodic
sources are allowed to be time varying according to their definition in the input file. Take the
piecewise-linear source defined in the following lines of statements as an example.

V1 101 0 PWL NSEG=3
+ X0=0.0 Y0=1.0
+ X1=1.0 Y1=2.0
+ X2=2.0 Y2=0.5
+ X3=3.0 Y3=0.5

Normally, the source value V(V1) would be as shown in fig 10.4 (a). When a POP analysis is carried out,
the source value V(V1), during the entire POP analysis, is clamped by SIMPLIS at 1V, the value of the
source at the beginning of the POP analysis. If there is a time-domain transient analysis immediately
following the POP analysis, the waveform V(V1), during this time-domain transient analysis, will be as
indicated in fig 10.4 (b): linearly rising from 1V to 2V during the first second, linearly decreasing from 2V
to 0.5V during the next second, and remaining at 0.5V for the rest of the simulation.
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10.4 (a) Waveform of a sample piecewise-linear voltage source when no periodic oper-
ating point analysis is specified, and (b) Waveform of the same voltage source when a
periodic operating point analysis is carried out.

Periodic Sources

Periodic sources are left unchanged during a POP analysis, and the time variable is reset to 0.0 at the end
of a POP analysis. However, it is not always true that the source value of a periodic source at the end of a
POP analysis will be equal to the value of the same source at t = 0 as defined in the input file. The reason
for this can be seen by examining the following statements in the input file:

VA 999 0 SAW V1=1 V2=3 FREQ=1K DELAY=0
+ OFF_UNTIL_DELAY=NO
VB 998 0 SAW V1=1 V2=3 FREQ=1K DELAY=250U
+ OFF_UNTIL_DELAY=NO
!DX 555 0 999 997 MX IC=0
.MODEL MX COMP RIN=10MEG ROUT=8 HYSTWD=2M
+ VOL=0 VOH=5
VDC 997 0 DC 1.999
.POP TRIG_GATE=!DX TRIG_COND=0_TO_1 MAX_PERIOD=400U
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If no periodic operating point analysis is carried out, the source values V(VA) and V(VB) would be as
shown in fig 10.5 (a). From this diagram, the source values V(VA) and V(VB) are obviously equal to 1V
and 2.5 V, respectively, at t = 0. However, at the exit of a successful POP analysis, the source value of VA
will be found to be equal to 2V rather than 1V. The cause of this discrepancy comes from the arbitrary
reset of the time variable to zero at the end of the POP analysis. To understand this reasoning, the reader is
referred to fig 10.5 (b), which shows the waveforms of V(VA), V(VB), and the logic output of the gate
!DX. From the input file statements above and from fig 10.5 (b), the start of a switching cycle is seen to
occur at time instants when V(VA) is rising and equal to 2V. Since each of the invisible transient analyses
carried out in the periodic operating point analysis is terminated at the start of a new switching cycle, the
source value V(VA) must be at 2V at the end of the POP analysis. Similarly, the source value V(VB) is
equal to 1.5 V, rather than 2.5V, at the end of the POP analysis.

10.5 (a) Waveforms of two periodic sawtooth voltage sources VA and VB when no peri-
odic operating point analysis is carried out, and (b) Waveform of the same voltage source
when a periodic operating point analysis is carried out. The start of a switching cycle is
defined as occurring when the output of the logic gate !DX is making a 0 to 1 transition.
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The POP_SHOWDATA option for POP Analysis

Under normal application of the periodic operating point analysis, the POP_SHOWDATA option should
be turned off. If a POP analysis fails, the user can run a regular time-domain transient analysis, without the
POP analysis, to make sure that the system has been correctly defined, modeled, and entered in the input
file. Typographical errors in entering the initial conditions for some devices or mistakes in the definition of
the switching logic can often be revealed through such a regular time-domain transient analysis.

After debugging the defined system to make sure initial conditions are within reasonable ranges and the
switching logic is properly set up, the user can apply the POP analysis again to compute the steady-state
solution. If the POP analysis fails again, the user may want to examine the progress of the POP analysis by
repeating the POP analysis with the POP_SHOWDATA option turned on. When the POP_SHOWDATA
option is turned on, a print/plot file named “XXXX.t4”, where “XXXX” is the name of the input file, is
generated during the POP analysis. This data file contains data for all of the print variables versus the time
variable for the sequence of invisible transient analyses carried out by the POP analysis.

Due to the prediction phases interspersed between successive transient analyses, the time variable, as
pointed out in See The Value of the Time Variable During the Periodic Operating Point Analysis , has no
real physical meaning and significance because the POP analysis is not following any true transient
experienced by the system. To make it easier to review the print variables in this data file, the time variable
in this data file is artificially set so that 1) it appears to be continuous and monotonically increasing, and 2)
the time instant at the end of each transient analysis carried out by the POP analysis also appears to be the
instant at the start of the next transient analysis. Since the prediction phase carried out between two
successive transient analyses adjusts the capacitor voltages and inductor currents so as to predict the
steady-state solution, jump discontinuities in the print variables are expected in this data file at the
boundary between successive switching cycles. As a result, it is not uncommon to see discontinuities in
the capacitor voltages and inductor currents if a plot is made from this data file.

A typical waveform plotted from the “XXXX.t4” data file for a successful POP analysis is shown in fig
10.6 (a). The switching frequency for this example is 10 kHz and discontinuities in the waveform are
observed at intervals of 100 microseconds. Typical waveforms plotted from the “XXXX.t4” data file for
unsuccessful POP analyses are shown in fig 10.6 (b) and fig 10.6 (c). The waveform in fig 10.6 (b) is
representative of a high-gain closed-loop regulated system where a small change in the capacitor voltages
or inductor currents can cause a dramatic change in the mode of operation of the system. In such a case,
the user may want to run a regular time-domain transient analysis until the system settles to a stable mode
of operation, read off the capacitor voltages and inductor currents, and then run a POP analysis with the
new initial conditions. The waveform in fig 10.6 (c) is representative of a system where the initial
conditions for a few devices as supplied by the user in the input file are very far away from the values that
they should be during steady-state operation. For instance, the waveform in fig 10.6 (c) suggests that, to
approach steady-state operation, the initial condition associated with the capacitor CC should be increased
to at least 100 V. Although the example waveforms shown in fig 10.6 are either capacitor voltages or
inductor currents, all voltage and current variables specified in the .PRINT statement are generated in this
data file for the user to examine the progress of the POP analysis.
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10.6 Typical waveforms obtained using the POP_SHOWDATA option:(a) Successful POP
analysis, waveforms settle in a periodic steady state, (b) Unsuccessful POP analysis,
waveforms fluctuate with large variations from one cycle to the next, and (c) Unsuccess-
ful POP analysis, waveforms approach unilaterally, but do not settle in a periodic steady
state.

10.4 Example of Applying the POP Analysis Tool

The regulated converter in Example 5 of Chapter 9 is used here as an example in applying the periodic
operating point analysis tool. The schematic associated with this example is repeated here in fig 10.7. In
particular, we would like to examine the transient response of this regulated converter when the input
voltage VI is abruptly changed from 40V to 30V, with the load RL fixed at 10. The variables of interest are
the output voltage V(RL) and the current I(L) through the filter inductor. The input file describing this
analysis is shown in fig 10.8 . To make the transient response more pronounced, some of the component
values have been changed from those listed in Example 5 of Chapter 9. In particular, the values on C1,
C14, and R14 have been changed to 0.005 F, 10 pF, and 40 k, respectively.
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10.7 Regulated Converter

10.8 Input File

*pop-example.sxsch
.PRINT ALL
.OPTIONS PSP_NPT=2001 POP_ITRMAX=40
.POP TRIG_GATE=X1.!D_CYCLE TRIG_COND=1_TO_0 MAX_PERIOD=50u
.TRAN 2m 0
X$\$$U2 11 14 10 opamp
VSAW 12 0 SAW V1=0 V2=5 FREQ=100k DELAY=0 OFF_UNTIL_DELAY=NO
X$\$$U3 6 0 11 12 SIMPLIS_COMP$\$$1
V1 2 0 PWL NSEG=3 X0=0 Y0=40 X1=100U Y1=40 X2=100U Y2=30
+ X3=100M Y3=30
VREF 14 0 2.5
L 4 5 40u IC=0.14
R12 0 8 10k
X1 12 13 PERIODIC_OP$\$$2
R13 8 10 10k
RC 7 5 50m
RL 5 0 10
R11 8 5 40k
C1 11 9 5n IC=-800m
R14 10 9 40k
C14 9 10 10p IC=0
CC 7 0 50u IC=12.48
Q1 2 3 6 0 Q1$\$$TP_VCQ IC=OPEN
.MODEL Q1$\$$TP_VCQ VCQPOS VSAT=700m RSAT=100m ROFF=10Meg GAIN=10
+ TH=2.5 HYSTWD=1u LOGIC=POS LEVEL=1
!R$\$$R1 0 3 R1$\$$TP_SSPWLR IC=1
.MODEL R1$\$$TP_SSPWLR VPWLR NSEG=2 X0=0 Y0=0 X1=0.7 Y1=10U
+ X2=0.8 Y2=1.00001
RX 4 3 10m
.SUBCKT PERIODIC_OP$\$$2 1 3
.NODE_MAP IN 1
.NODE_MAP OUT 3
!D_CYCLE 3 0 1 302 M1M IC=0
VREF 302 0 DC 2.5
.MODEL M1M COMP RIN=10MEG ROUT=50 VOL=0 VOH=5
+ HYSTWD=0.001 DELAY=0
.ENDS PERIODIC_OP$\$$2
.SUBCKT SIMPLIS_COMP$\$$1 201 100 101 102
!DCOMP 201 100 101 102 MCOMP IC=1
.MODEL MCOMP COMP RIN=1e+007 ROUT=50 VOL=0 VOH=5
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+ HYSTWD=0.001 DELAY=0
.ENDS SIMPLIS_COMP$\$$1
.SUBCKT opamp 2 3 1
.NODE_MAP VINN 1
.NODE_MAP VINP 3
.NODE_MAP VOUT 2
RIN 3 1 5Meg
EOP 2 0 3 1 1Meg
.ENDS opamp
.END

To obtain the transient response in this study, a time-domain transient simulation with the voltage of VI set
at 30V is carried out after a periodic operating point analysis is applied to the system with the voltage of
VI set at 40V. Notice that the initial conditions defined for the various components from Example 5 in
Chapter 9 correspond to the steady-state operating conditions when the voltage of VI is at 40V. Obviously,
if one already knows the steady-state solution, there is no point in running a POP analysis to find the
steady-state solution. For the purpose of illustration, the initial conditions in the input file shown in Figure
10-8 have been changed, providing SIMPLIS with initial information which is not within the immediate
vicinity of the steady-state solution.

The input voltage source VI is now modeled as a piecewise-linear source instead of a DC source. Its
source value jumps from 40V to 30V when t = 100 s. To find the steady-state solution of the system when
the voltage of VI is 40V, the periodic operating analysis tool is invoked by using the .POP statement as
shown. The comparator !D$U3 defines the start of a switching cycle as the moment when the value of the
sawtooth source VSAW is decreasing and reaching the value of approximately 2.5V. Since the source VI is
a piecewise-linear source, its source value is held constant at 40V, its initial value, during the POP
analysis. As a result, the steady-state solution as computed by the periodic operating analysis tool
corresponds to the steady-state solution of the system when VI is at 40V.

After the POP analysis is finished, SIMPLIS carries out a regular time-domain transient simulation
according to the .TRAN statement for 2000s. As explained in How POP Deals with Time Varying
Sources, the source value of VI will be at 40V for the first 100s in this transient simulation and at 30V for
the rest of the simulation. Waveforms as obtained in this time-domain transient analysis for V(VI), V(RL),
and I(L) are shown in fig 10.9 .
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10.9 Waveforms obtained in time-domain analysis for V(VI), V(RL), and I(L).
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Chapter 11

Simplis-FX

11.1 Overview

A small-signal is applied to a system to investigate the small-signal behavior around its equilibrium.
Small-signal analysis is often carried out in the frequency-domain because the resulting data can be
succinctly displayed in various graphical forms, such as semi-log Bode plots and direct or inverse polar
plots. Various characteristics, such as impedances, transfer functions, and stability information, can be
determined from these graphical plots.

The application of small-signal frequency-domain analysis to switching piecewise-linear systems presents
tremendous challenges. A Laplace transform or Laplace-transformed equivalent-circuit analysis, which is
normally applied to a non-switching system to extract the small-signal frequency-domain characteristics,
cannot be easily applied to a switching piecewise-linear system due to the inherent switching actions.
SIMPLIS-FX is a small-signal frequency-domain analyzer specifically designed for the analysis of
switching piecewise-linear systems. The analysis is based on the time-domain simulation of the switching
piecewise-linear systems without having to resort to any circuit averaging or derivation of equivalent
non-switching models. Instead of removing the switching actions to derive the small-signal
frequency-domain characteristics, SIMPLIS-FX includes the switching action in its calculation of the
small-signal frequency-domain characteristics.

While the computational aspects of SIMPLIS-FX may be daunting and tedious, the mathematical basis
from which it is formulated is very simple. First, SIMPLIS-POP is used to compute the periodic operating
point/trajectory of a switching piecewise-linear system. This operating point/trajectory represents the
large-signal equilibrium of the system. SIMPLIS-FX can then be applied to study the small-signal
behavior of the system around the large-signal equilibrium. The small-signal frequency-domain analysis is
actually a sequence of analyses at discrete analysis frequencies. At each analysis frequency, the procedure
of the analysis can be summarized as follows:

1. Apply small-signal stimuli in the form of voltage/current sources to the system under study. These
small-signal stimuli are called the small-signal AC sources and their waveforms are time-domain
sinusoidal. At each analysis frequency, the frequencies of all small-signal AC sources are set to the
same value, the analysis frequency, and their amplitudes are set to infinitesimally small values.
Since the frequency of all small-signal AC sources are set to the analysis frequency, the analysis
frequency is also frequently called the excitation frequency.

2. The equilibrium of the system under perturbation from the small-signal is computed next. This new
equilibrium, although at an infinitesimally small distance away from the large-signal equilibrium
computed by the periodic operating-point (POP) analysis, is definitely not the same as the
large-signal equilibrium. While the large-signal equilibrium is periodic with a frequency equal to the
periodic operating frequency, or the switching frequency, as determined by the POP analysis, this
new equilibrium is periodic with a frequency that is equal to the highest common factor between the
analysis frequency and the periodic operating frequency.
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3. Fourier analysis is then applied to the new equilibrium to extract the small-signal response of the
system at the analysis frequency.

Since SIMPLIS-FX is based on time domain simulations, it can handle a switching piecewise-linear
system with any structure (topology), any mode of operation, and any control scheme, and under fixed or
variable switching frequency as long as the following two conditions are satisfied:

1. The system can be simulated in the time domain via SIMPLIS-TX, and

2. SIMPLIS-POP is able to successfully compute the periodic operating point/trajectory of the system.

For example, multiple-switch multiple-output, multiple feedback loop converters are easily handled by
SIMPLIS-FX because the analysis is constructed for general switching piecewise-linear systems without
any assumption or restriction placed on the number of switches, outputs, or feedback loops.

Some switching power supplies are designed to have very high DC gain to improve the line/load regulation
of the output voltage(s). The measurement of the loop gain of these systems cannot be carried out with the
loop opened because the high DC gain of the system may drive the opened-loop system to operate at a
vastly different operating equilibrium from the original closed-loop equilibrium. Thus, the ability to
evaluate the loop-gain of a switching power supply with the feedback loop closed is very useful. The effect
of the parasitic elements on the frequency response is usually minimal. If it is suspected that a few
parasitic elements are significantly affecting the frequency response of the system, SIMPLIS-FX can be
relied upon to verify such a hypothesis. SIMPLIS-FX can accurately predict the impact that the parasitic
elements might have on the frequency response because SIMPLIS-FX does not assume the system
variables to be slowly varying within one switching period and does not remove the switching actions
during the process of deriving the small-signal response.

The algorithm behind SIMPLIS-FX is rigorously derived, making it accurate and robust. For example, the
analysis frequency is not limited to less than half of the switching frequency. Undeniably, aliasing is going
to be present when a switching system is excited at a frequency over half of the switching frequency. In
such a situation, SIMPLIS-FX can accurately compute the response of the system at the excited frequency,
whether it is below or above the switching frequency. Theoretically, the small-signal frequency-analysis
algorithm behind SIMPLIS-FX is accurate to within 0.5 dB and 1 degree at each analysis frequency from
DC to infinity. Practically, the accuracy of the analysis and the highest analysis frequency that can be
applied and still maintain a prescribed accuracy depend on how accurately the physical components are
modeled in the switching piecewise-linear system. If there is a noticeable discrepancy between the
measured frequency response in the laboratory and the data generated by SIMPLIS-FX, you can trust
SIMPLIS-FX and concentrate on

1. determining that the simulated system represents, with reasonable accuracy, the system measured in
the laboratory,

2. improving the device models of any components that you believe have not been adequately
modeled, and

3. checking the laboratory measurement setup to make sure that the measurements are valid, since
laboratory measurements of switching systems with small-signal excitation are inherently noisy and
noise can easily lead to measurement errors.

In summary, the features of SIMPLIS-FX are as follows:

1. It is based on time-domain simulation via SIMPLIS-TX.

2. It relies on SIMPLIS-POP to compute the large-signal periodic operating equilibrium of the system.

3. It is general and versatile:

it handles any pulse-width modulated (PWM) circuit topologies such as boost, buck, buck-boost,
Cuk, SEPIC, half-bridge, full-bridge, etc.,

it handles any resonant circuit topologies such as series resonant, parallel resonant, quasi resonant,
phase-shifted resonant, etc.,
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it handles any mode of operation such as continuous-mmf (CMM) mode, discontinuous-mmf
(DMM) mode, etc.,

it handles any control scheme such as voltage-mode control, peak-current-mode control,
average-current-mode current, charge control, etc.,

it handles both fixed-frequency as well as variable-frequency systems, and

it easily handles multiple-switch multiple-output converters

it can evaluate the loop-gain of a system while the loop is closed

it can evaluate the effect of the parasitic elements on the frequency response,

it is accurate for analysis frequencies above the switching frequency, and

it is accurate to within 0.5 dB and 1 degree

11.2 Statements Relating AC Analysis

The small-signal frequency-domain analysis is a sequence of individual analyses at a set of discrete
excitation frequencies. Since the excitation frequency is monotonically increased from the starting
frequency to the stopping frequency, this sequence of analyses is usually called the “swept AC analysis”,
or “AC analysis with swept frequencies”. The excitation frequency of the first analysis is set to “start
_freq”. In each subsequent analysis, the excitation frequency is increased according to the “sweep_type”
and “n_pt” parameters. The sequence of analyses is stopped when the excitation frequency exceeds the
parameter value of “stop_freq”. At each of the excitation or analysis frequencies, periodic small-signal
stimuli having the same frequency as the analysis frequency are applied to excite the system around its
operating point or equilibrium. The response of the system at this analysis frequency is then measured.
The analysis frequencies are defined through an analysis statement and the small-signal stimuli are defined
through device statements. In addition, you have the option of analyzing the system in either the
continuous domain or the discrete domain by using an option statement.

.AC Analysis Statement

The .AC analysis statement instructs SIMPLIS to carry out the SIMPLIS-FX Small-Signal
Frequency-Domain analysis. The format of the .AC statement is:

.AC sweep_type n_pt start_freq stop_freq

where

.AC is the three-character keyword “.AC”, standing for small-signal frequency-
domain analysis.

sweep_type is either the three-character keyword “DEC”, the three-character keyword
“OCT”, or the three-character keyword “LIN”.

n_pt is a positive integer. If “sweep_type” is set to “DEC”, the frequency of
analysis will be swept in a logarithmic manner and n_pt represents the num-
ber of points per decade in the swept frequency. If “sweep_type” is set to
“OCT”, the frequency of analysis will be swept in a logarithmic manner
and n_pt represents the number of points per octave in the swept frequency.
If “sweep_type” is set to “LIN”, the frequency of analysis is swept in a
linear manner and n_pt represents the total number of points in the linear
frequency sweep. If “sweep_type” is set to be “LIN”, n_pt must be an
integer larger than one.

start_freq is a positive floating-point number representing the starting frequency of
the sweep.
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stop_freq is a positive floating-point number representing the stopping frequency of
the sweep.

The .AC statement can be specified in any one of the three formats shown. Just like any other analysis
statement, the .AC statement can only appear within the scope of definition of the main circuit. There can
be no more than one .AC statement in an input file. Since the SIMPLIS-FX Small-Signal
Frequency-Domain analysis is specifically designed for the small-signal analysis of switching
piecewise-linear systems around its periodic operating point, the periodic operating-point (POP) analysis
must be carried out before the small-signal analysis can be applied. Therefore, the .POP statement must
appear before the .AC statement in the input file. If both the time-domain transient analysis and the
small-signal frequency-domain analysis are specified in an input file, the .AC analysis statement for the
small-signal frequency-domain analysis must appear before the .TRAN analysis statement for the
time-domain transient analysis.

Option Statement Associated with AC Analysis

There is one option statement associated with the SIMPLIS-FX small-signal frequency-domain analysis.
The format of this option statement is:

.OPTIONS FREQ_DOMAIN=D

where

.OPTIONS is the eight-character keyword “.OPTIONS” indicating this is an option
statement.

FREQ_DOMAIN= is the 12-character keyword “FREQ_DOMAIN=”

D is either the character ‘S’ indicating the continuous domain or the character
‘Z’ indicating the discrete domain.

By default, a frequency-domain analysis is carried out in the continuous domain. The statement:

.OPTIONS FREQ_DOMAIN=Z

will override the default and instruct SIMPLIS-FX to analyze the system using discrete domain
techniques. If the continuous domain is chosen, the waveform of each small-signal stimulus will be a
continuous sinusoidal function of the time variable. If the discrete domain is chosen, the waveform of each
small-signal stimulus as a function of the time variable is equal to the result of applying the sample and
hold to a continuous sinusoidal function of the time variable. See Synopsis of Small-Signal AC Analysis
for a more detailed explanation of the difference between using the different domains in a small-signal
frequency-domain signal analysis.

Statement Defining a Small-Signal AC Source

A small-signal stimulus is defined via a small-signal AC voltage or current source. The formats for
defining small-signal AC voltage and current sources are:

Vname> n+ n- AC amplitude phase

and

Iname n+ n- AC amplitude phase

where

V is the one-character element keyword “V” indicating a voltage
source.
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I is the one-character element keyword “I” indicating a current
source.

name is the individual name of the device.

n+ is the name of the positive node, and is a nonnegative integer.

n- is the name of the negative node, and is a nonnegative integer.

AC is the two-character keyword “AC” to signify that this is a small-signal AC
source.

amplitude is a positive floating-point number representing the amplitude of this small-
signal AC source relative to any other specified small-signal AC sources.
The specification of the amplitude parameter is optional. A default value of
1.0 (unit) will be used if no value is specified.

phase is a floating-point number representing the relative phase of this small-
signal AC source in degree. The specification of phase is optional. If the
phase parameter is to be specified for a certain source, the amplitude pa-
rameter must also be specified. The default for phase is 0.0 degree.

Since device statements can appear within the scope of definition of any general circuit, the small-signal
AC voltage/current sources can be defined in the main circuit as well as in any subcircuit. For a more
detailed explanation of the “amplitude” and the “phase” parameters, see Synopsis of Small-Signal AC
Analysis.

11.3 Synopsis of Small-Signal AC Analysis

After the periodic-operating point/trajectory of the system has been determined by the periodic-operating
point (POP) analysis, the SIMPLIS-FX Small-Signal Frequency-Domain Analysis can then be applied to
compute the small-signal response of the system in a small neighborhood around the large-signal periodic
equilibrium. For illustration purposes, let us assume that the following .AC analysis statement was
specified in the input file:

.AC DEC 10 250 25K

This analysis statement instructs SIMPLIS-FX to carry out the small-signal frequency-domain analysis by
sweeping the excitation frequency of all small-signal AC sources in a logarithmic manner from 250 Hz to
25 kHz. The number of analysis frequencies per decade is set to 10. You can easily verify that this analysis
statement leads to the following excitation frequencies:

250.000 Hz 314.731 Hz 396.223 Hz
. . .
1.57739 kHz 1.98582 kHz 2.50000 kHz
3.14731 kHz 3.96223 kHz
. . .
15.7739 kHz 19.8582 kHz 25.0000 kHz

As the sequence of small-signal analyses at these excitation frequencies is carried out, SIMPLIS-FX
reports the progress by printing a matrix of numbers which represent the “percent complete” of the
swept-frequency analysis. For example, a screen display such as:

SMALL-SIGNAL FREQUENCY-DOMAIN ANALYSIS
CONTINUOUS S-DOMAIN

01 02 03 04 05 06 07 08 09 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52
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Elapsed time : 0 hr 0 min 6 sec
CPU time : 0 hr 0 min 4.64 sec
Analyzed freq. : 2.500000000000e+03 Hz

means that 52 percent of the small-signal frequency-domain analyses have been completed and that the
excitation frequency has been swept past 2.5 kHz.

The “percent complete” shown in the small-signal frequency-domain analysis is calculated based on the
number of expected analyses at discrete excitation frequencies and not based on the CPU time. Since a
logarithm sweep of 10 points per decade from 250 Hz to 25 kHz is specified in the preceding example,
there will be a total of 21 analyses starting from 250 Hz and stopping at 25 kHz. The analysis at 2.5 kHz is
the 11th one in this sequence of analyses. Hence, if SIMPLIS-FX has just finished the analysis at 2.5 kHz,
the percent complete is reported as (11 / 21) x 100 = 52%.

The actual CPU time involved in each individual analysis varies. As a rule of thumb, the CPU time is
linearly proportional to the excitation frequency. When the excitation frequency is 1 decade or more below
the periodic operating frequency computed in the POP analysis, SIMPLIS-FX is extremely fast. When the
excitation frequency is close to the periodic operating frequency computed in the POP analysis,
SIMPLIS-FX is reasonable in computation speed. When the excitation frequency is 1 decade or more
above the periodic operating frequency computed in the POP analysis, the computation time taken by
SIMPLIS-FX will be much longer, since SIMPLIS-FX must determine the high excitation frequency affect
on the system response.

This brief synopsis is adequate as a reference for using the SIMPLIS-FX Small-Signal Frequency-Domain
Analyzer. It is recommended that any first-time user, as well as those interested in more details of
SIMPLIS-FX, read the following subsections of this Section to better understand the behavior of
small-signal AC sources and various large-signal time-varying sources during the small-signal
frequency-domain analysis. Behaviour of AC Sources in Transient and POP describes how the
small-signal AC sources are treated in both the time-domain transient analysis and the periodic
operating-point analysis.

Amplitude of Small-Signal AC Sources

If the continuous domain is chosen for the small-signal frequency-domain analysis, all of the small-signal
AC sources are sinusoids. If the discrete domain is chosen instead, the waveforms of all of the small-signal
AC sources are the result of applying a sample-and-hold process to a sinusoid. In both cases the original
sinusoidal waveform is completely defined by three parameters: the frequency, the amplitude, and the
phase of the sinusoidal waveform. The frequency of each small-signal AC source is set to the analysis
frequency defined by the “sweep_type” and “n_pt” parameters in the .AC analysis statement. The
“amplitude” parameter is explained in this subsection.

The “amplitude” parameter in the device statement defining a small-signal AC source should be regarded
as a relative quantity rather than an absolute quantity. Suppose the following statements appear in the input
file:

V1 1 0 AC 2 -45 V2 4 0 AC I3 7 9 AC 5 60

Since the amplitude and the phase parameters of V2 are not specified, the defaults of 1.0 unit and 0.0
degree are used. Although the amplitude parameter of V1 is set to 2, the actual amplitude of V1 during the
small-signal frequency-domain analysis is not equal to 2.0 V. By definition, a small-signal analysis is the
examination of the behavior of a system around its equilibrium when it is perturbed from its equilibrium
with stimuli of infinitesimally small amplitude. The amplitude of the three sources V1, V2, and I3 are all
set to infinitesimally small values by SIMPLIS-FX during the small-signal analysis. However, the ratios
between the amplitude of these three sources are maintained according to the amplitude parameters in the
statements defining the small-signal AC sources. In this example, the amplitude of V1 is always set to
twice the amplitude of V2 and the amplitude of I3 is always set to five times as large as the amplitude of
V2. Another way to interpret the three device statements above is that the amplitude of V1, V2, and I3 are
2, 1, and 5 infinitesimally small units, respectively.
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The excitation of a nonlinear system by sinusoidal inputs with finite amplitudes generates responses not
only at the excitation frequency, but also at harmonics or subharmonics of the excitation frequency. For a
true small-signal analysis, the amplitude of the sinusoidal inputs must be made infinitesimally small so the
responses at the higher harmonics and/or the subharmonics are insignificant compared to the response at
the excitation frequency. This is equivalent to saying that the response of a nonlinear system appears linear
when the amplitude of the excitation sources are sufficiently small. The same can be said about switching
piecewise-linear systems.

Making small-signal measurements on a breadboard system in the laboratory presents some practical
challenges in choosing the amplitude of the exciting sinusoids. Ideally, we would like the amplitude of the
exciting sinusoids to be as small as possible to avoid the nonlinear effects, but the amplitude of these
exciting sinusoids cannot be too small. If these amplitudes are too small, the signal-to-noise ratio would be
low and it will be extremely difficult to get an accurate measurement. This is especially true for switching
systems which inherently carry large-signal noises at the switching frequency and higher harmonics.
SIMPLIS-FX uses a proprietary algorithm to make sure that the amplitude of all small-signal AC sources
are infinitesimally small so as to generate linear responses, and the infinitesimally small responses are
accurately resolved in the presence of the large-signal switching noises.

Phase Delay of Small-Signal AC Sources

Similar to the “amplitude” parameter, the “phase” parameter in the device statements defining a
small-signal AC source is a relative quantity rather than an absolute quantity. Suppose again that the
following device statements appear in the input file:

V1 1 0 AC 2 -45 V2 4 0 AC I3 7 9 AC 5 60

The amplitude and the phase parameters of V2 are not specified, so the default values of 1.0 unit and 0.0
degree are used. The phase parameter is a relative quantity. In this example, the phase of I3 is set to 60
degrees ahead of the phase of V2 at any excitation frequency, and the phase of V1 is set to 45 degrees
behind the phase of V2.

You will rarely need more than one small-signal AC source with different phase delay in the small-signal
frequency-domain analysis of switching piecewise-linear systems. The phase parameter has been provided
for backward compatibility with existing circuit simulators such as SPICE.

Sample Waveforms of AC Sources Continuous Domain

The waveform of a small-signal AC source is sinusoidal if the continuous domain is used for the
small-signal frequency-domain analysis. For example, the following device statements specify three
small-signal AC sources V1, V2, and I3 with amplitudes equal to 2, 1, and 5 units, respectively.

V1 1 0 AC 2 -45 V2 4 0 AC I3 7 9 AC 5 60

The waveforms of these three sources at an analysis frequency of 1 kHz are displayed in 11.1(a). The
waveforms of these sources at an analysis frequency of 2 kHz are displayed in 11.1(b). Since the phase
parameter is relative, these waveforms have been arbitrarily drawn with V2 having a positive-slope zero
crossing at t=0. Once the phase of V2 has been arbitrarily chosen, the phases of V1 and I3 are fixed at 45
degrees behind and 60 degrees ahead of the phase of V2, respectively.
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11.1 Waveforms for the small-signal AC source examples V1, V2, and I3.

Sample Waveforms of AC Sources Discrete Domain

If the discrete domain is used, the waveform of a small-signal AC source as a function of time is the result
of applying an ideal sample-and-hold process to a sinusoidal waveform. This ideal sampling is taken at the
beginning of a switching period/cycle where the beginning of a switching period/cycle is defined through
the .POP analysis statement. The value of a small-signal AC source is held constant for the remaining of
the switching period/cycle until another set of samples is taken at the start of the next switching
period/cycle. The sample device statements shown in Sample Waveforms of AC Sources Continuous
Domain are repeated here for illustration:

V1 1 0 AC 2 -45 V2 4 0 AC I3 7 9 AC 5 60

Suppose the analysis frequency is 1 kHz and the switching frequency, or the periodic operating frequency,
computed by the POP analysis is 50 kHz. Fig. 11-2(a) shows the sinusoidal waveforms associated with V1
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and I3 in dash lines and their actual waveforms in solid lines. It can be seen that the waveforms of V1 and
I3 are obtained by applying sample-and-hold to the corresponding sinusoidal waveforms. The associated
waveforms of V2 are expressly omitted in fig 11.2 (a) to reduce the cluttering of the figure. The waveforms
associated with V1 and I3 should sufficiently illustrate the sample-and-hold process. Fig 11.2(b) show
similar waveforms of V1 and I3 when the analysis frequency is at 2 kHz.

11.2 Waveforms for the small-signal AC source examples, V1 and I3.

Continuous and Discrete Domain Differences

The most obvious difference between using the continuous domain or the discrete domain in the
small-signal analysis is the source values of the small-signal AC sources. As illustrated in the previous
subsections, the source value of a small-signal AC source is a continuous sinusoidal waveform if the
continuous domain is used. If the discrete domain is used, the waveform of a small-signal AC source is the
piecewise-constant waveform resulting from the application of a sample-and-hold to a related continuous
sinusoidal waveform.

Another difference between using the continuous domain and the discrete domain in the small-signal
analysis is the way the responses are analyzed. In the case of the continuous domain, Fourier analysis is
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directly applied to any response of the system to extract the harmonic with the same frequency as the
analysis frequency. In the case of the discrete domain, a sample-and-hold process is applied to each
response of the system, and Fourier analysis is then applied to the result of this sample-and-hold process.
The sampling is set to occur, just like the small-signal AC sources, at the beginning of a switching cycle
where this beginning is defined through the .POP analysis statement.

Whether continuous domain or discrete domain is used, the effects of the implicit sample-and-hold that
occurs in a switching system are taken into consideration by SIMPLIS-FX. For example, if a simple
switch, S, is controlled by a control signal, cs(t), an effective sample-and-hold process of cs(t) is taken
place at every moment switch S switches position.

Another example of implicit sample-and-hold occurs at the two inputs of a comparator. Whenever the
comparator switches its output logic state, we have, in effect, a sample-and-hold of the two analog inputs
of the comparator. If you are familiar with the peak-current control of energy-storage dc-to-dc converters,
recall that peak-current control would approach unstable operation as the duty ratio of the power switch
approaches 50%, provided no compensation ramp is applied to the control. Using existing modeling
methods, such instability can only be predicted by explicitly adding a sample-and-hold function block, or
any approximation of such, from the controlling signal to the power stage. Such explicit addition is not
necessary when these control strategies are analyzed with SIMPLIS-FX because the implicit
sample-and-hold process that occurs in the circuit is taken into consideration in the computation of the
frequency response. As a result, the schematic that is used for time-domain simulation is the schematic
that will be analyzed in frequency-domain, eliminating the need to replace parts of a schematic by
averaged-circuit equivalents and eliminating the need to add extraneous components or function blocks
when small-signal frequency-domain analysis is performed. Using SIMPLIS-FX, you can study how a
converter under peak-current control scheme approaches instability as the duty ratio approaches 50% when
no compensation ramp is applied in the control and this instability can be analyzed using either the
continuous domain or the discrete domain. The discrete domain is useful if you want to study a system
using digital control techniques. For most applications, the use of the continuous domain is adequate.

AC Analysis Behaviour of Time-Varying Sources

Since the SIMPLIS-FX Small-Signal Frequency-Domain Analyzer is specifically designed for
small-signal analysis of switching piecewise-linear systems in the near neighborhood of the periodic
operating point/trajectory, large-signal time-varying sources are treated the same way in the small-signal
analysis as they were treated during the periodic operating point (POP) analysis. All periodic large-signal
time-varying sources are treated as active periodic sources with time-varying source values while all
aperiodic large-signal time-varying sources are treated as DC sources during the small-signal
frequency-domain analysis. Section 10.3.2 explains the treatment of the time variable and the treatment of
various large-signal time-varying sources during the periodic operating-point (POP) analysis. The key
features of these treatments are summarized here for convenience:

1. Simplis resets the time variable t to zero at the end of a POP analysis, i.e. at the end of the circuit’s
period as defined by the circuit and the POP trigger gate. Simplis-FX starts its simulations for each
excitation frequency at the same t=0 point;

2. during the small-signal frequency-domain analysis, aperiodic sources are changed to DC sources.
The value of each DC source is set equal to the calculated values of the corresponding aperiodic
source at the time equivalent to the end of the circuit’s period. Aperiodic sources include
exponential pulse sources, piecewise-linear sources, and sinusoidal/cosinusoidal sources with non
zero damping coefficients;

3. the source values of all periodic large-signal time-varying sources such as sawtooth sources,
triangular sources, square-wave sources, pulse sources, and sinusoidal/cosinusoidal sources with
zero damping coefficients are considered active during the small-signal frequency-domain analysis.
That is, they maintain the same time-varying waveforms as if they were used in a large-signal
time-domain analysis. These sources are not turned into DC sources because their time-varying
waveforms are essential to the periodic operation of the switching piecewise-linear systems. Turning
these sources into DC sources is tantamount to eliminating the switching actions of the system under
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study and the small-signal analysis would not be able to reveal the true small-signal nature of the
system around its periodic equilibrium.

Behaviour of AC Sources in Transient and POP

Small-signal AC sources have no effect on any analysis other than the small-signal frequency-domain
analysis. For example, a small-signal voltage source is turned into a short circuit during the time-domain
transient analysis and during the periodic operating-point analysis. Similarly, a small-signal current source
is turned into an open circuit during the time-domain transient analysis and during the periodic
operating-point analysis. As a result, leaving small-signal AC sources in the input file has no effect on any
analysis except the small-signal frequency-domain analysis. Hence it is not necessary for you to remove
the definition of the small-signal AC sources from the input file in order to run other types of analyses.

Example of Applying the AC Analysis Tool

The regulated converter used in the illustration of the Periodic Operating Point Analysis in Chapter 10 is
repeated here to show how the SIMPLIS-FX Small-Signal Frequency-Domain can be applied to determine
the loop gain of a closed-loop regulated converter. The schematic of this converter, including the
small-signal AC source, is shown in Fig. 11.3. The input file of this analysis is shown in Fig. 11.4.

11.3 Small-signal excitation to determine the loop gain of the regulated converter.

11.4 Input File (as generated by SIMetrix)

Example in User Manual with Small-Signal Analysis
.NODE_MAP Output 15
.NODE_MAP Control 14
.AC DEC 40 1u 50k
.PRINT ALL
.OPTIONS PSP_NPT=2001 POP_ITRMAX=40
.POP TRIG_GATE=X1.!D_CYCLE TRIG_COND=1_TO_0
+ MAX_PERIOD=50u
X$\$$U2 9 13 8 opamp
VSAW 11 0 SAW V1=0 V2=5 FREQ=100k DELAY=0 OFF_UNTIL_DELAY=NO
X$\$$U1 5 0 9 11 SIMPLIS_COMP$\$$1
V1 2 0 40
V2 15 14 AC 1
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VREF 13 0 2.5
L 4 15 40u IC=0.14
R12 0 10 10k
X1 11 12 PERIODIC_OP$\$$2
R13 10 8 10k
RC 6 15 50m
RL 15 0 10
R11 10 14 40k
C1 9 7 100n IC=-800m
R14 8 7 2k
C14 7 8 1n IC=0
CC 6 0 50u IC=12.48
Q1 2 3 5 0 Q1$\$$TP_VCQ IC=OPEN
.MODEL Q1$\$$TP_VCQ VCQPOS VSAT=700m RSAT=100m ROFF=10Meg GAIN=10
+ TH=2.5 HYSTWD=1u LOGIC=POS LEVEL=1
!R$\$$R1 0 3 R1$\$$TP_SSPWLR IC=1
.MODEL R1$\$$TP_SSPWLR VPWLR NSEG=2 X0=0 Y0=0 X1=0.7 Y1=10U
+ X2=0.8 Y2=1.00001
RX 4 3 10m
.SUBCKT PERIODIC_OP$\$$2 1 3
.NODE_MAP IN 1
.NODE_MAP OUT 3
!D_CYCLE 3 0 1 302 M1M IC=1
VREF 302 0 DC 2.5
.MODEL M1M COMP RIN=10MEG ROUT=50 VOL=0 VOH=5
+ HYSTWD=0.001 DELAY=0
.ENDS PERIODIC_OP$\$$2
.SUBCKT SIMPLIS_COMP$\$$1 201 100 101 102
!DCOMP 201 100 101 102 MCOMP IC=1
.MODEL MCOMP COMP RIN=1e+007 ROUT=10 VOL=0 VOH=5
+ HYSTWD=0.1 DELAY=0
.ENDS SIMPLIS_COMP$\$$1
.SUBCKT opamp 2 3 1
.NODE_MAP VINN 1
.NODE_MAP VINP 3
.NODE_MAP VOUT 2
RIN 3 1 5Meg
EOP 2 0 3 1 1Meg
.ENDS opamp
.END

Notice that a small-signal AC source, VSS, is inserted in the feedback loop between the output and control
nodes. If the impedance from the control node to ground is much higher than the impedance from the
output to ground, the loop gain G(jω) of such a regulated system is accurately approximated by the
following complex ratio:

G(jω) = −V output(jω)/V control(jω)

This is the function of the “Bode Plot Probe” shown at the top right of the schematic 11.3. The result of
G(jω) for this converter is shown in fig 11.5. In fig 11.5, the gain cross-over occurs at 147 Hz, and the
phase margin is about 100 degrees. Although the phase margin is high, indicating the converter is stable as
it is, there is room for improvement to this design. The low cross-over frequency means the transient
response of this regulated converter would be slow and would take a long time to settle back to the
periodic operating equilibrium. Moreover, a zero should be introduced to the loop gain function to
compensate for the pair of complex poles at 3.56 kHz which is caused by the output filter formed by L and
C. Otherwise, the sharp drop in the phase due to the pair of complex poles can have a very detrimental
effect on the stability of the system if the cross-over frequency is pushed higher. Changing the value of
R14 will effect the gain cross-over frequency and the phase margin of this converter. As a matter of fact,
this converter becomes unstable, with a phase margin of -6 degrees, when the resistor R14 in the feedback
loop is raised to 16KΩ!
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11.5 Magnitude and Phase of G(jω).
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Chapter 12

Advanced Digital Components

12.1 Overview

Major Benefits

To support and enhance the simulation of switching power supplies containing large amounts of digital
content, we introduced the new SIMPLIS Advanced Digital simulation capability in SIMPLIS:

• Makes Virtual prototyping of mixed mode analog and digital circuits in power conversion
applications practical regardless of the level of digital content.

• Provides in the Advanced Digital Library a wide variety of new digital functions to simplify your
simulation efforts.

• Improves simulation speed by 10-20x for basic digital gate simulation compared to earlier versions
of SIMPLIS.

SIMPLIS Advanced Digital components allows designers of digitally controlled power supplies to
effectively explore the interaction between increasingly complex digital control schemes and the resulting
performance of the complete power supply system. Using SIMPLIS Advanced Digital components also
improves the simulation speed of power supply systems with significant digital content describing
supervisory and protection circuits.

New Digital Features

The Advanced Digital Library provides a wide variety of new digital functions to simplify your simulation
efforts.

• In addition to the basic logic gates that have long been included in the SIMPLIS engine, the library
now includes:

• Adders

• Subtracters

• Multipliers

• Comparators

• Counters

• ADCs

• Expanded library of flip-flops and latches
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• Asymmetric Delay Block

All new logic functions in the Advanced Digital library have improved characteristics including :

• Inertial delay on inputs. (Input glitches narrower than the specified delay are effectively ignored
rather than being propagated through the device.)

• Finite delay in all Advanced Digital devices. (This eliminates problems associated with the classic
SIMPLIS logic gate’s ability to instantaneously switch state with zero delay.)

• Random bus probe feature is now available for use on any digital bus containing all Advanced
Digital nodes at any level of a hierarchical schematic

• Ground Reference pin is optional when connected to all Advanced Digital devices

Advanced Digital Components

SIMPLIS Advanced Digital components enhance the digital simulation performance of the traditional
SIMPLIS simulation engine. This enhanced digital simulation capability specifically works with the
simulation of the new Advanced Digital components. The improved simulation speed of Advanced Digital
components introduced in SIMPLIS v5.6 results in a much faster and more efficient overall simulations
when there is a significant amount of digital content in the system under study.

We refer to the new digital components as “Advanced Digital components” while referring to the
traditional digital models in SIMPLIS as the “classic digital components.” Beginning with SIMPLIS v5.6 ,
both classic and Advanced Digital components are supported and they are both available for placement on
the schematic through a reorganized set of menus in the schematic editor.

All Advanced Digital components have four slanted stripes in the lower left-hand corner of the symbol.
For example, a 3-input AND gate will look like one of the following, where U1 has a ground-reference pin
and U2 does not:
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Classic Components

A component is considered a classic component if it meets all of the following requirements:

1. It is NOT an Advanced Digital component.

2. It is NOT a probe that measures voltage. For example, the regular voltage probe, the bus voltage
probe, and the Bode plot probe are all probes that measure voltages.

3. It is NOT a fixed pin current probe.

Hence, resistors, capacitors, inductors, independent and controlled sources, transformers, BJTs,
MOSFETs, opto-couplers, fixed in-line current probes, etc. are all considered classic components. A
classic digital component is also considered a classic component as its simulation performance is
unchanged by the new enhanced digital simulator.

Similarities Between Classic and Advanced Digital Components

1. Both classic digital components and Advanced Digital components employ similar analog
parameters for modeling the input behavior. Typically, each input pin is modeled by an
analog-to-digital interface bridge composed of a resistor RIN. Each input pin is modeled by a logic
state of 0 or 1, depending on the value of the input voltage as compared to the threshold voltage TH
and the hysteretic-window width HYSTWD.

2. Both classic and Advanced Digital components employ similar analog parameters for modeling the
output behavior. Typically, each output is modeled by a digital-to-analog interface bridge that is a
composed of a resistor ROUT in series with a voltage source. The voltage source will have a value
of VOL or VOH, depending on the logic output state of that output pin.

3. Both classic and Advanced Digital components support devices with or without the ground
reference pins, with a few minor exceptions.

4. Both classic and Advanced Digital components model the switching of the outputs with zero rise
time and zero fall time.

Differences between Classic and Advanced Digital Components

1. While Advanced Digital components support analog parameters for modeling the input or output
behavior, an A-to-D or D-to-A interface bridge is introduced if and only if the particular input or
output pin is connected to a classic component. If an input or output pin of an Advanced Digital
component is connected only to other Advanced Digital components, the probing of such a node
will produce a waveform of logic values of 0, 1, or 0.5 (for an indeterminate logic value) versus time
and it will be plotted as digital data in the upper portion of the waveform display tool. If you try to
random probe the pin current of such a pin, the result will be a constant current of zero amperes
since there is no analog circuitry to model the input or output behavior of such a pin. That is, if an
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input or output pin of an Advanced Digital component is connected only to other Advanced Digital
components, the input associated with such an input or output pin exists only in the logical space
and not in the analog space.

2. For an Advanced Digital component, the ground reference pin MUST exist if at least one of the
input pins or one of the output pins is connected to a classic component.

When all of the input pins and all of the output pins of an Advanced Digital component are
connected only to other Advanced Digital components, the ground reference pin is optional. Its
presence or absence will not impact the simulation results.

3. For a classic digital component without ground reference pin, each output produces an analog
voltage through its Thevenin equivalent output with respect to the ground node in the schematic.

4. While the delay parameter is optional and has a default value of 0.0 in the classic digital
components, the delay parameters in the Advanced Digital components are mandatory and they are
not allowed to be equal to 0.0.

5. The classic digital components employ the “transport” delay model, which means for simple logic
gates any glitches in the inputs are passed along to the output(s) after the defined delay. The
Advanced Digital components employ the “inertial” delay model and glitches in the inputs that are
shorter than the output-delay parameter are absorbed by the digital component and are not passed
along to the output(s).

Strategies for Deploying the new Advanced Digital Components

The key to an efficient simulation using new SIMPLIS Advanced Digital components is to achieve the
optimum balance between taking maximum advantage of the faster simulation times for Advanced Digital
components while minimizing unnecessary interaction between new Advanced Digital components and
the rest of the classic components in the SIMPLIS schematic.This can be accomplished using the
following guidelines:

1. Isolate Advanced Digital components as much as possible and try to locally minimize the number of
I/O pins that are connected to classic components.

2. If most or all inputs to a simple logic gate are required to be connected to classic components, the
simulation will run faster if a classic digital component is used as a front-end to drive a buffer from
the Advanced Digital component library. For example, if all inputs to a three-input AND-gate are
connected to classic analog components, a valid option is to have an Advanced Digital 3-input AND
gate to sense the three analog inputs directly:

However, for a more efficient and faster simulation, you should re-arrange the circuit and use a
classic 3-input AND gate from the building-block library as the front-end to drive an Advanced
Digital buffer. This approach is faster because the classic simulation engine only interrupts the
Advanced Digital simulation when the logic state of the output of U2 changes, whereas, in the
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former case the classic simulation engine has to interrupt the Advanced Digital simulation any time
one of the three inputs of the AND-gate changes logic state.

In this example, you should assign zero delay to U2, the classic 3-input AND gate and the non-zero
delay to U3, the Advanced Digital buffer.

3. For an Advanced Digital component that has at least one I/O pin connected to an analog node, you
must use the version that includes the ground reference pin.

4. For an Advanced Digital component whose I/O pins are all connected only to other Advanced
Digital components, either the version that includes the ground reference pin or the version that does
not include the reference pin can be used. The choice is up to the preference of the user and will not
impact the simulation results.

A Simple DEMO Circuit

There is an example circuit supplied at Examples\SIMPLIS\Digital_PWM\SyncBuck_Digital
_PWM.sxsch. This is a hierarchical schematic representing a simple synchronous buck converter
controlled by a PWM controller employing PID compensation. This PWM controller is entirely made up
from new Advanced Digital components.

12.2 Advanced Digital Component Reference

Introduction

This section describes the various components available and how to use them in the SIMetrix schematic
environment.

General Behaviour

Intertial Delay

Any Input to Output delay for the new Advanced Digital components incorporates inertial delay where, if
the pulse width of the incoming signal is less than the Input to Output delay of a particular device, then
there is no resulting change in the output. In the example below, one of the input pulses is narrower than
the input-to-output delay of a buffer logic gate. In that instance, the output of the buffer gate effectively
“ignores” that one input pulse.
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This inertial delay behavior describes the Delay parameter for all the Advanced Digital Logic Gates as
well as the Out Delay of the Adder, Subtracter, Multiplier, Comparator and Latches and each of the delay
parameters of the Analog-to-Digital Converters, Counters and Flip Flops.

None of the delay parameters of the SIMPLIS Advanced Digital components may be set to zero.

Transport Delay

By contrast, the Classic SIMPLIS digital gates model transport delay, in which they are able to respond to
any width signal at their input and reproduce that same width signal at the output after the specified delay
interval.

The Classic Digital components may have their delay parameters set to zero.

Flip-Flop Delay Parameters

This example shows an edge triggered D-type flip flop with asynchronous set and reset. In this example,
Set and Reset are selected to be active high. The following diagram shows the definition of the Clk to
Output Delay as well as the Set/Reset Delay. All Flip Flop devices have a Clk to Output Delay parameter
and all Flip Flops with the Set and Reset feature have a Set/Reset Delay.
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Flip-Flop Minimum Clock Width

As in this example of a D-type flip flop, where the device is set to trigger on the positive going edge of the
clock, if the width of the clock pulse is narrower than the specified Minimum Clock Width, the clock pulse
is ignored.

Discrete Filters

Each of these discrete filters is driven by an input clock signal. For proper operation, the input clock signal
needs to be made up of a train of pulses with pulse widths equal to or wider than the “Time of Acquisition”
set for the filter. For the most efficient simulation, this kind of pulses can be generated by driving periodic
pulses through the “Sampling Clock Generator for Discrete Filters”. If the “Sampling Clock Generator for
Discrete Filters” is used to generate the input clock signals for the discrete filters, the driving periodic
pulses can have pulse widths shorter than the time of acquisition as long as they are well defined pulses
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If the time of acquisition is tACQ, then the “Sampling Clock Generator for Discrete Filters” will generate a
pulse whose pulse width is equal to tACQ every time its “TRIG” input makes a positive transition exceeding
3V. During this pulse, the discrete filter will sample the input data at the “IN” input pin and it will take
tACQ for it to satisfactorily acquire the input data. After tACQ has expired, the discrete filter will update its
output, and the output will settle within a time duration less than or equal to tACQ. In addition, during this
duration when the output is updated, the output “CLK_OUT” is raised to a high value.

155
SIMPLIS Reference Manual



12.2. Advanced Component Reference

A discrete filter with more than two poles can be synthesized through a cascade of one-pole and/or
two-pole discrete filters. In such case, the timing signal for each driven stage is derived from the “CLK
_OUT” signal of the immediately preceding stage.
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Parts Available Summary

Flip-Flops

D-Type Flip-Flop

D-Type Flip-Flop w/ SET/RST

S/R Flip-Flop

S/R Flip-Flop w/ SET/RST

J/K Flip-Flop

J/K Flip-Flop w/ SET/RST

Toggle Flip-Flop

Toggle Flip-Flop w/ SET/RST

Gates

AND Gate

NAND Gate

OR Gate

NOR Gate

Exclusive-OR Gate

Comparator

Buffer

Inverter

Arithmetic

Adder

Subtracter

Multiplier

Divider

Fixed Point Divider

A to D / D to A

Analog to Digital Converter - Operation

Analog to Digital Converter - Parameters

Analog to Digital Converter w/ Adjustable Voltage Reference - Operation

Analog to Digital Converter w/ Adjustable Voltage Reference - Parameters

Digital to Analog Converter (Non-clocked)
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Sources

Digital Pulse Source

Digital Signal Source

Functions

Asymmetric Delay

Digital Comparator

Digital Constant

Digital Lookup Table

Counters

Up Counter

Down Counter

Up/Down Counter

Latches

D-Type Latch

S/R Latch

S/R Latch w/ Enable

Discrete Filters

1-Pole Discrete Filter - Operation

1-Pole Discrete Filter - Parameters

2-Pole Discrete Filter - Operation

2-Pole Discrete Filter - Parameters

PID Discrete Filter - Operation

PID Discrete Filter - Parameters

Registers

Data Register

Shift Register

Shift Register (Left)

Shift Register (Right)

Shift Register (Multi-bit)

Barrel Shifter
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D-Type Flip-Flop

Clk to Output Delay

Property Name CLK_TO_OUT_DELAY (see Flip-Flop Delay Parameters).

Data Type NUMBER

Description Delay from triggering edge of clock until output changes

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hold Time

Property Name HOLD_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the flip-flop’s output

Minimum Clk Width

Property Name MIN_CLK (see Flip-Flop Delay Parameters).

Data Type NUMBER

Description Minimum valid clock width
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Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Setup Time

Property Name SETUP_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

160
SIMPLIS Reference Manual



12.2. Advanced Component Reference

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

D-Type Flip-Flop w/ SET/RST

Clk to Output Delay

Property Name CLK_TO_OUT_DELAY (see Flip-Flop Delay Parameters).

Data Type NUMBER

Description Delay from triggering edge of clock until output changes

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hold Time

Property Name HOLD_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1
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Description Initial condition of the flip-flop’s output

Minimum Clk Width

Property Name MIN_CLK (see Flip-Flop Minimum Clock Width)

Data Type NUMBER

Description Minimum valid clock width

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Set/Reset Delay

Property Name SET_RESET_DELAY (see Flip-Flop Delay Parameters).

Data Type NUMBER

Description Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name SET_RESET_LEVEL

Data Type INTEGER

Options 0, 1

Description Determines the set / reset level of a device, 1 means active high, 0 means
active low

Set/Reset Type

Property Name SET_RESET_TYPE

Data Type STRING

Options SYNC, ASYNC
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Description Determines whether or not output events are synchronized with a clock
event

Setup Time

Property Name SETUP_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

S/R Flip-Flop

Clk to Output Delay
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Property Name CLK_TO_OUT_DELAY (see Flip-Flop Delay Parameters).

Data Type NUMBER

Description Delay from triggering edge of clock until output changes

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hold Time

Property Name HOLD_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the flip-flop’s output

Minimum Clk Width

Property Name MIN_CLK (see Flip-Flop Minimum Clock Width).

Data Type NUMBER

Description Minimum valid clock width

Input Resistance
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Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Setup Time

Property Name SETUP_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage
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Property Name VOL

Data Type NUMBER

Description Output low voltage

S/R Flip-Flop w/ SET/RST

Clk to Output Delay

Property Name CLK_TO_OUT_DELAY (see Flip-Flop Delay Parameters).

Data Type NUMBER

Description Delay from triggering edge of clock until output changes

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hold Time

Property Name HOLD_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the flip-flop’s output
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Minimum Clk Width

Property Name MIN_CLK (see Flip-Flop Minimum Clock Width).

Data Type NUMBER

Description: Minimum
valid clock width

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Set/Reset Delay

Property Name SET_RESET_DELAY (see Flip-Flop Delay Parameters).

Data Type NUMBER

Description Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name SET_RESET_LEVEL

Data Type INTEGER

Options 0, 1

Description Determines the set / reset level of a device, 1 means active high, 0 means
active low

Set/Reset Type

Property Name SET_RESET_TYPE

Data Type STRING

Options SYNC, ASYNC

Description Determines whether or not output events are synchronized with a clock
event
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Setup Time

Property Name SETUP_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

J/K Flip-Flop

Clk to Output Delay

Property Name CLK_TO_OUT_DELAY (see Flip-Flop Delay Parameters).

Data Type NUMBER
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Description Delay from triggering edge of clock until output changes

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hold Time

Property Name HOLD_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the flip-flop’s output

Minimum Clk Width

Property Name MIN_CLK (see Flip-Flop Minimum Clock Width).

Data Type NUMBER

Description Minimum valid clock width

Input Resistance

Property Name RIN

Data Type NUMBER

169
SIMPLIS Reference Manual



12.2. Advanced Component Reference

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Setup Time

Property Name SETUP_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER
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Description Output low voltage

J/K Flip-Flop w/ SET/RST

Clk to Output Delay

Property Name CLK_TO_OUT_DELAY (see Flip-Flop Delay Parameters).

Data Type NUMBER

Description Delay from triggering edge of clock until output changes

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hold Time

Property Name HOLD_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the flip-flop’s output

Minimum Clk Width
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Property Name MIN_CLK (see Flip-Flop Minimum Clock Width).

Data Type NUMBER

Description Minimum valid clock width

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Set/Reset Delay

Property Name SET_RESET_DELAY (Additional Info)

Data Type NUMBER

Description Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name SET_RESET_LEVEL

Data Type INTEGER

Options 0, 1

Description Determines the set / reset level of a device, 1 means active high, 0 means
active low

Set/Reset Type

Property Name SET_RESET_TYPE

Data Type STRING

Options SYNC, ASYNC

Description Determines whether or not output events are synchronized with a clock
event
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Setup Time

Property Name SETUP_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Toggle Flip-Flop

Clk to Output Delay

Property Name CLK_TO_OUT_DELAY (see Flip-Flop Delay Parameters).

Data Type NUMBER

Description Delay from triggering edge of clock until output changes
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Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hold Time

Property Name HOLD_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the flip-flop’s output

Minimum Clk Width

Property Name MIN_CLK (see Flip-Flop Minimum Clock Width).

Data Type NUMBER

Description Minimum valid clock width

Input Resistance

Property Name RIN

Data Type NUMBER

DescriptionInput resis-
tance
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Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Setup Time

Property Name SETUP_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage
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Toggle Flip-Flop w/ SET/RST

Clk to Output Delay

Property Name CLK_TO_OUT_DELAY (see Flip-Flop Delay Parameters).

Data Type NUMBER

Description Delay from triggering edge of clock until output changes

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hold Time

Property Name HOLD_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the flip-flop’s output

Minimum Clk Width

Property Name MIN_CLK (see Flip-Flop Minimum Clock Width).

Data Type NUMBER

176
SIMPLIS Reference Manual



12.2. Advanced Component Reference

Description Minimum valid clock width

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Set/Reset Delay

Property Name SET_RESET_DELAY ()

Data Type NUMBER

Description Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name SET_RESET_LEVEL

Data Type INTEGER

Options 0, 1

Description Determines the set / reset level of a device, 1 means active high, 0 means
active low

Set/Reset Type

Property Name SET_RESET_TYPE

Data Type STRING

Options SYNC, ASYNC

Description Determines whether or not output events are synchronized with a clock
event

Setup Time

Property Name SETUP_TIME
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Data Type NUMBER

Description Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

AND Gate

Delay

Property Name DELAY (see Inertial Delay).

Data Type NUMBER

Description Delay from time an input pin goes active until output changes

Hysteresis
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Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the gate’s output

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL
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Data Type NUMBER

Description Output low voltage

NAND Gate

Delay

Property Name DELAY (see Intertial Delay).

Data Type NUMBER

Description Delay from time an input pin goes active until output changes

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the gate’s output

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH
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Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

OR Gate

Delay

Property Name DELAY (see Intertial Delay).

Data Type NUMBER

Description Delay from time an input pin goes active until output changes

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the gate’s output

Input Resistance

Property Name RIN
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Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

NOR Gate

Delay

Property Name DELAY (see Intertial Delay).

Data Type NUMBER

Description Delay from time an input pin goes active until output changes

Hysteresis

Property Name HYSTWD

Data Type NUMBER
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Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the gate’s output

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage
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Exclusive-OR Gate

Delay

Property Name DELAY (see Intertial Delay).

Data Type NUMBER

Description Delay from time an input pin goes active until output changes

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the gate’s output

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage
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Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Comparator

Delay

Property Name DELAY (see Intertial Delay).

Data Type NUMBER

Description Delay from time an input pin goes active until output changes

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the gate’s output

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance
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Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Buffer

Delay

Property Name DELAY (see Intertial Delay).

Data Type NUMBER

Description Delay from time an input pin goes active until output changes

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the gate’s output
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Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Inverter

Delay

Property Name DELAY (see Intertial Delay).

Data Type NUMBER

Description Delay from time an input pin goes active until output changes
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Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the gate’s output

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

188
SIMPLIS Reference Manual



12.2. Advanced Component Reference

Property Name VOL

Data Type NUMBER

Description Output low voltage

Adder

Code

Property Name CODE

Data Type STRING

Options UNSIGNED, TWOS_COMPLEMENT, OFFSET_BINARY

Description Encoding scheme for binary inputs / outputs for multi-pin I/O

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Description Initial condition of the function’s output

Initial Condition of Overflow

Property Name IC_OFL

Data Type STRING

Options POS, NEG, NONE

Description Initial condition of the overflow outputs of a device, POS means POFL
high, NEG means NOFL high, and NONE means both POFL and NOFL
are low
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Num. Bits

Property Name NUMBITS

Data Type INTEGER

Description Number of input or output bits of a device, depending on the device

Output Delay

Property Name OUT_DELAY

Data Type NUMBER

Description Delay from when the input state changes until output changes

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage
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Property Name VOL

Data Type NUMBER

Description Output low voltage

Subtracter

Code

Property Name CODE

Data Type STRING

Options UNSIGNED, TWOS_COMPLEMENT, OFFSET_BINARY

Description Encoding scheme for binary inputs / outputs for multi-pin I/O

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Description Initial condition of the function’s output

Initial Condition of Overflow

Property Name IC_OFL

Data Type STRING

Options POS, NEG, NONE

Description Initial condition of the overflow outputs of a device, POS means POFL
high, NEG means NOFL high, and NONE means both POFL and NOFL
are low
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Num. Bits

Property Name NUMBITS

Data Type INTEGER

Description Number of input or output bits of a device, depending on the device

Output Delay

Property Name OUT_DELAY

Data Type NUMBER

Description Delay from when the input state changes until output changes

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage
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Property Name VOL

Data Type NUMBER

Description Output low voltage

Multiplier

Code

Property Name CODE

Data Type STRING

Options UNSIGNED, TWOS_COMPLEMENT, OFFSET_BINARY

Description Encoding scheme for binary inputs / outputs for multi-pin I/O

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Description Initial condition of the function’s output

Num. Bits A

Property Name NUMBITS_A

Data Type INTEGER

Description Number of bits for the first input of a multi-input device
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Num. Bits B

Property Name NUMBITS_B

Data Type INTEGER

Description Number of bits for the second input of a multi-input device

Output Delay

Property Name OUT_DELAY

Data Type NUMBER

Description Delay from when the input state changes until output changes

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage
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Divider

Code

Property Name: CODE

Data Type: STRING

Options: UNSIGNED, TWOS_COMPLEMENT, OFFSET_BINARY

Description: Encoding scheme for binary inputs / outputs for multi-pin I/O

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin

Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the function’s output

Initial Condition of Overflow

Property Name: IC_OFL

Data Type: STRING

Options: POS, NEG, NONE

Description: Initial condition of the overflow outputs of a device, POS means POFL
high, NEG means NOFL high, and NONE means both POFL and NOFL
are low

Initial Condition of Remainder
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Property Name: IC_REMAINDER

Data Type: NUMBER

Description: Initial condition of the remainder outputs of a divider

Num. Bits A

Property Name: NUMBITS_A

Data Type: INTEGER

Description: Number of bits for the first input of a multi-input device

Num. Bits B

Property Name: NUMBITS_B

Data Type: INTEGER

Description: Number of bits for the second input of a multi-input device

Output Delay

Property Name: OUT_DELAY

Data Type: NUMBER

Description: Delay from when the input state changes until output changes

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance

Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage
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Output High Voltage

Property Name: VOH

Data Type: NUMBER

Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage

Fixed Point Divider

Code

Property Name: CODE

Data Type: STRING

Options: UNSIGNED, TWOS_COMPLEMENT, OFFSET_BINARY

Description: Encoding scheme for binary inputs / outputs for multi-pin I/O

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin

Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the function’s output
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Initial Condition of Overflow

Property Name: IC_OFL

Data Type: STRING

Options: POS, NEG, NONE

Description: Initial condition of the overflow outputs of a device, POS means POFL
high, NEG means NOFL high, and NONE means both POFL and NOFL
are low

Num. Bits A

Property Name: NUMBITS_A

Data Type: INTEGER

Description: Number of bits for the first input of a multi-input device

Num. Bits B

Property Name: NUMBITS_B

Data Type: INTEGER

Description: Number of bits for the second input of a multi-input device

Num. Bits C

Property Name: NUMBITS_C

Data Type: INTEGER

Description: Number of bits for the output of a fixed point divider

Output Delay

Property Name: OUT_DELAY

Data Type: NUMBER

Description: Delay from when the input state changes until output changes

Radix Position A

Property Name: RADIX_POS_A

Data Type: NUMBER

Description: Radix position for the first input of a fixed point divider
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Radix Position B

Property Name: RADIX_POS_B

Data Type: NUMBER

Description: Radix position for the second input of a fixed point divider

Radix Position C

Property Name: RADIX_POS_C

Data Type: NUMBER

Description: Radix position for the output of a fixed point divider

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance

Round Mode

Property Name: ROUND_MODE

Data Type: STRING

Options: UP, DOWN, CEILING, FLOOR, HALF_UP, HALF_DOWN, HALF
_EVEN

Description: Rounding mode for a digital fixed point divider

Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage
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Output High Voltage

Property Name: VOH

Data Type: NUMBER

Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage

Analog to Digital Converter - Operation

This is a 1-32 bit analog to digital converter. The operation of this device is illustrated by the following
diagrams:
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Conversion Timing

The ADC starts the conversion at the rising or falling edge of the clock, depending on the selected value of
the Trigger Condition. The sampling of the analog input signal begins at this point. The sampling of the
input is complete after an interval of Sample delay. The output data changes in response to this, Convert
Time seconds after the clock trigger event. At the same time that the output initially changes, the Data
ready output goes low (inactive) then high again after a delay equal to Data ready delay. It is possible to
start a new conversion before the previous conversion is complete provided it is started later than Minimum
clock width seconds after the previous conversion was started. Minimum clock width must always be less
than Convert Time. If the Minimum clock width specification is violated, the conversion will not start.

Analog to Digital Converter - Parameters

Code

Property Name CODE

Data Type STRING

Options UNSIGNED, TWOS_COMPLEMENT, OFFSET_BINARY

Description Encoding scheme for binary inputs / outputs for multi-pin I/O

Convert Time

Property Name CONVERT_TIME

Data Type NUMBER

Description Time required to convert analog input to digital output

Data ready delay

Property Name DATA_READY_DELAY

Data Type NUMBER

Description Delay from time when the output changes until the Data Ready signal is
true

Enable Delay

Property Name ENABLE_DELAY

Data Type NUMBER

Description Delay from time enable pin goes active until output is enabled

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)
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Initial Condition

Property Name IC

Data Type NUMBER

Description Initial condition of the function’s output

Initial Condition of Data Ready

Property Name IC_DATA_READY

Data Type STRING

Options READY, NOT_READY

Description Initial condition of the data ready output of a device

Initial Condition of Overflow

Property Name IC_OFL

Data Type STRING

Options POS, NEG, NONE

Description Initial condition of the overflow outputs of a device, POS means POFL
high, NEG means NOFL high, and NONE means both POFL and NOFL
are low

Minimum Clk Width

Property Name MIN_CLK

Data Type NUMBER

Description Minimum valid clock width

Num. Bits

Property Name NUMBITS

Data Type INTEGER

Description Number of input or output bits of a device, depending on the device

Offset

Property Name OFFSET

Data Type NUMBER

Description Midpoint of analog output voltage range
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Range

Property Name RANGE

Data Type NUMBER

Description Analog output voltage range

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Sample delay

Property Name SAMPLE_DELAY

Data Type NUMBER

Description Time required to sample analog input

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name VOH
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Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Analog to Digital Converter w/ Adjustable Voltage Reference - Operation

This is a 1-32 bit analog to digital converter. The operation of this device for the most part identical to the
Analog to Digital Converter described above. As shown in this figure , the major difference is that the
range and offset of this device is controlled by the voltage on the analog reference pin VREF.

Input Range and Offset:

This ADC has an Analog Reference that determines the Input Voltage Range and the Input Voltage Offset
based on the value of the analog voltage present between the VREF and RTN pins. The voltage at the
VREF pin must always be positive and greater than zero. The Input Voltage Range is equal to the voltage
between the VREF and RTN pins while the Input Voltage Offset is equal to 1/2 of the Input Voltage Range.

Analog to Digital Converter w/ Adjustable Voltage Reference - Parameters

Code
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Property Name CODE

Data Type STRING

Options UNSIGNED, TWOS_COMPLEMENT, OFFSET_BINARY

Description Encoding scheme for binary inputs / outputs for multi-pin I/O

Convert Time

Property Name CONVERT_TIME

Data Type NUMBER

Description Time required to convert analog input to digital output

Data ready delay

Property Name DATA_READY_DELAY

Data Type NUMBER

Description Delay from time when the output changes until the Data Ready signal is
true

Enable Delay

Property Name ENABLE_DELAY

Data Type NUMBER

Description Delay from time enable pin goes active until output is enabled

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Description Initial condition of the function’s output

Initial Condition of Data Ready

Property Name IC_DATA_READY
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Data Type STRING

Options READY, NOT_READY

Description Initial condition of the data ready output of a device

Initial Condition of Overflow

Property Name IC_OFL

Data Type STRING

Options POS, NEG, NONE

Description Initial condition of the overflow outputs of a device, POS means POFL
high, NEG means NOFL high, and NONE means both POFL and NOFL
are low

Minimum Clk Width

Property Name MIN_CLK

Data Type NUMBER

Description Minimum valid clock width

Num. Bits

Property Name NUMBITS

Data Type INTEGER

Description Number of input or output bits of a device, depending on the device

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Sample delay
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Property Name SAMPLE_DELAY

Data Type NUMBER

Description Time required to sample analog input

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Digital to Analog Converter (Non-clocked)

Code

Property Name: CODE

Data Type: STRING

Options: UNSIGNED, TWOS_COMPLEMENT, OFFSET_BINARY

Description: Encoding scheme for binary inputs / outputs for multi-pin I/O
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Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the converter’s output

Num. Bits

Property Name: NUMBITS

Data Type: INTEGER

Description: Number of input or output bits of a device, depending on the device

Delay

Property Name: OUT_DELAY

Data Type: NUMBER

Description: Delay from when the input state changes until output changes

Offset

Property Name: OUTPUT_OFFSET

Data Type: NUMBER

Description: Midpoint of analog output voltage range

Range

Property Name: OUTPUT_RANGE

Data Type: NUMBER

Description: Analog output voltage range

Input Resistance
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Property Name: RIN

Data Type: NUMBER

Description: Input resistance

Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage

Digital Pulse Source

Compl. Output

Property Name COMP

Data Type STRING

Options Y, N

Description Determines whether or not a device has a complementary output

Start Delay

Property Name DELAY

Data Type NUMBER

Description Delay from time an input pin goes active until output changes

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Period (0 for single pulse)
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Property Name PERIOD

Data Type NUMBER

Description Pulse generator oscillation period

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Pulse Width

Property Name WIDTH

Data Type NUMBER

Description Time interval between the leading edge and trailing edge of a pulse sig-
nal

Digital Signal Source

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin
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Num. Bits

Property Name: NUMBITS

Data Type: INTEGER

Description: Number of input or output bits of a device, depending on the device

Redefine Source?

Property Name: REDEFINE_SOURCE

Data Type: BOOLEAN

Options: YES, NO

Description: If set to true, the user will be prompted to edit the function definition
or to choose a new definition file, depending on the value of SOURCE
_DEF

Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Source Definition

Property Name: SOURCE_DEF

Data Type: STRING

Options: Dialog, File

Description: Determines whether the definition of the function comes from a dialog or
an external file

Output High Voltage

Property Name: VOH

Data Type: NUMBER

Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage
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Asymmetric Delay

Fall Delay

Property Name FALL_DELAY

Data Type NUMBER

Description Delay from falling edge of the input until the output changes

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Description Initial condition of the function’s output

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Rise Delay

Property Name RISE_DELAY

Data Type NUMBER

Description Delay from rising edge of input until the output changes
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Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Digital Comparator

Code

Property Name CODE

Data Type STRING

Options UNSIGNED, TWOS_COMPLEMENT, OFFSET_BINARY

Description Encoding scheme for binary inputs / outputs for multi-pin I/O

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin
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Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Description Initial condition of the function’s output

Num. Bits

Property Name NUMBITS

Data Type INTEGER

Description Number of input or output bits of a device, depending on the device

Output Delay

Property Name OUT_DELAY

Data Type NUMBER

Description Delay from when the input state changes until output changes

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Threshold
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Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Digital Constant

Format

Property Name FORMAT

Data Type STRING

Options DECIMAL, BINARY, HEX

Description Determines the input formatting of the VALUE parameter of a digital con-
stant

Num. Bits

Property Name NUMBITS

Data Type INTEGER

Description Number of input or output bits of a device, depending on the device

Value

Property Name VALUE

Data Type INTEGER

Description Output value of a digital constant

216
SIMPLIS Reference Manual



12.2. Advanced Component Reference

Digital Lookup Table

Default Value

Property Name: DEFAULT

Data Type: NUMBER

Description: Default value of a digital funtion

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the function’s output

Num. Bits In

Property Name: NUMBITS_A

Data Type: INTEGER

Description: Number of input bits for a digital lookup table

Num. Bits Out

Property Name: NUMBITS_B

Data Type: INTEGER

Description: Number of output bits for a digital lookup table

Output Delay

Property Name: OUT_DELAY

Data Type: NUMBER

Description: Delay from when the input state changes until output changes

Redefine Table?

Property Name: REDEFINE_SOURCE

Data Type: BOOLEAN

Options: YES, NO

Description: If set to true, the user will be prompted to edit the function definition
or to choose a new definition file, depending on the value of SOURCE
_DEF
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Source Definition

Property Name: SOURCE_DEF

Data Type: STRING

Options: Dialog, File

Description: Determines whether the definition of the function comes from a dialog or
an external file

Digital Lookup Table allowing Don’t Care in Input Definition

Default Value

Property Name: DEFAULT

Data Type: NUMBER

Description: Default value of a digital funtion

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the function’s output

Num. Bits In

Property Name: NUMBITS_A

Data Type: INTEGER

Description: Number of input bits for a digital lookup table

Num. Bits Out

Property Name: NUMBITS_B

Data Type: INTEGER

Description: Number of output bits for a digital lookup table

Output Delay

Property Name: OUT_DELAY

Data Type: NUMBER

Description: Delay from when the input state changes until output changes
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Redefine Table?

Property Name: REDEFINE_SOURCE

Data Type: BOOLEAN

Options: YES, NO

Description: If set to true, the user will be prompted to edit the function definition
or to choose a new definition file, depending on the value of SOURCE
_DEF

Digital Mux

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin

Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the function’s output

Inversion?

Property Name: INVERSION

Data Type: STRING

Options: Y,N

Description: Determines whether or not the output reflects the actual or inverted states
of the inputs

Number of Bits per Input
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Property Name: NUM_BITS

Data Type: INTEGER

Description: Number of bits for a multi-bit device

Number of Inputs

Property Name: NUM_INPUTS

Data Type: INTEGER

Description: Number of inputs for a multi-input device

Delay

Property Name: OUT_DELAY

Data Type: NUMBER

Description: Delay from when the input state changes until output changes

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance

Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage

Output High Voltage

Property Name: VOH

Data Type: NUMBER

Description: Output high voltage
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Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage

Digital Demux

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin

Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the function’s output

Inactive Level

Property Name: INACTIVE_LEVEL

Data Type: INTEGER

Options: 0, 1

Description: State of unselected outputs for a digital demuxer

Inversion?

Property Name: INVERSION

Data Type: STRING

Options: Y,N
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Description: Determines whether or not the output reflects the actual or inverted states
of the inputs

Number of Bits per Output

Property Name: NUM_BITS

Data Type: INTEGER

Description: Number of bits for a multi-bit device

Number of Outputs

Property Name: NUM_OUTPUTS

Data Type: INTEGER

Description: Number of outputs for a multi-output device

Delay

Property Name: OUT_DELAY

Data Type: NUMBER

Description: Delay from when the input state changes until output changes

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance

Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage
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Output High Voltage

Property Name: VOH

Data Type: NUMBER

Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage

Up Counter

Clk to Output Delay

Property Name CLK_TO_OUT_DELAY

Data Type NUMBER

Description Delay from triggering edge of clock until output changes

Enable Delay

Property Name ENABLE_DELAY

Data Type NUMBER

Description Delay from time enable pin goes active until output is enabled

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hold Time

Property Name HOLD_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state
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Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Description Initial condition of the function’s output

Minimum Clk Width

Property Name MIN_CLK

Data Type NUMBER

Description Minimum valid clock width

Num. Bits

Property Name NUMBITS

Data Type INTEGER

Description Number of input or output bits of a device, depending on the device

Reset delay

Property Name RESET_DELAY

Data Type NUMBER

Description Delay from time reset pin goes active until output is reset

Reset Level

Property Name RESET_LEVEL

Data Type INTEGER

Options 0, 1

Description Determines the reset level of a device, 1 means active high, 0 means active
low
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Reset Type

Property Name RESET_TYPE

Data Type STRING

Options SYNC, ASYNC

Description Determines whether or not output events are synchronized with a clock
event

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Setup Time

Property Name SETUP_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge
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Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Down Counter

Clk to Output Delay

Property Name CLK_TO_OUT_DELAY

Data Type NUMBER

Description Delay from triggering edge of clock until output changes

Enable Delay

Property Name ENABLE_DELAY

Data Type NUMBER

Description Delay from time enable pin goes active until output is enabled

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hold Time

Property Name HOLD_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state
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Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Description Initial condition of the function’s output

Minimum Clk Width

Property Name MIN_CLK

Data Type NUMBER

Description Minimum valid clock width

Num. Bits

Property Name NUMBITS

Data Type INTEGER

Description Number of input or output bits of a device, depending on the device

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Set delay
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Property Name SET_DELAY

Data Type NUMBER

Description Delay from time set pin goes active until output is set

Set Level

Property Name SET_LEVEL

Data Type INTEGER

Options 0, 1

Description Determines the set level of a device, 1 means active high, 0 means active
low

Set Type

Property Name SET_TYPE

Data Type STRING

Options SYNC, ASYNC

Description Determines whether or not output events are synchronized with a clock
event

Setup Time

Property Name SETUP_TIME

Data Type NUMBER

Description Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Trigger Condition

Property Name TRIG_COND

Data Type STRING

Options 0_TO_1, 1_TO_0

Description Determines the triggering condition of the clock pin, either the rising edge
or the falling edge
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Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Up/Down Counter

Clk to Output Delay

Property Name: CLK_TO_OUT_DELAY

Data Type: NUMBER

Description: Delay from triggering edge of clock until output changes

Enable Delay

Property Name: ENABLE_DELAY

Data Type: NUMBER

Description: Delay from time enable pin goes active until output is enabled

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin

Hold Time

Property Name: HOLD_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state
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Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the counter’s output

Minimum Clk Width

Property Name: MIN_CLK

Data Type: NUMBER

Description: Minimum valid clock width

Num. Bits

Property Name: NUMBITS

Data Type: INTEGER

Description: Number of input or output bits of a device, depending on the device

Reset To

Property Name: RESET_TO

Data Type: NUMBER

Description: Determines the value of the counter to be assigned when the reset pin goes
active, assign value of -1 to ignore

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance
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Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Set/Reset Delay

Property Name: SET_RESET_DELAY

Data Type: NUMBER

Description: Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name: SET_RESET_LEVEL

Data Type: INTEGER

Options: 0, 1

Description: Determines the set / reset level of a device, 1 means active high, 0 means
active low

Set/Reset Type

Property Name: SET_RESET_TYPE

Data Type: STRING

Options: SYNC, ASYNC

Description: Determines whether or not output events are synchronized with a clock
event

Set To

Property Name: SET_TO

Data Type: NUMBER

Description: Determines the value of the counter to be assigned when the set pin goes
active, assign value of -1 to ignore

Setup Time

Property Name: SETUP_TIME

Data Type: NUMBER
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Description: Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage

Trigger Condition

Property Name: TRIG_COND

Data Type: STRING

Options: 0_TO_1, 1_TO_0

Description: Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name: VOH

Data Type: NUMBER

Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage

D-Type Latch

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hysteresis
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Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the latch’s output

Delay

Property Name OUT_DELAY

Data Type NUMBER

Description Delay from when the input state changes until output changes

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance

Set/Reset Delay

Property Name SET_RESET_DELAY

Data Type NUMBER

Description Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name SET_RESET_LEVEL
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Data Type INTEGER

Options 0, 1

Description Determines the set / reset level of a device, 1 means active high, 0 means
active low

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

S/R Latch

S/R Dominance

Property Name DOM

Data Type STRING

Options S, R, NONE

Description Determines the dominance of a latch

Enable

Property Name ENABLE

Data Type STRING

Options Y, N

Description Determines whether or not a device has an enable pin
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Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the latch’s output

Delay

Property Name OUT_DELAY

Data Type NUMBER

Description Delay from when the input state changes until output changes

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance
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Set/Reset Level

Property Name SET_RESET_LEVEL

Data Type INTEGER

Options 0, 1

Description Determines the set / reset level of a device, 1 means active high, 0 means
active low

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

S/R Latch w/ Enable

S/R Dominance

Property Name DOM

Data Type STRING

Options S, R, NONE

Description Determines the dominance of a latch

Enable

Property Name ENABLE

Data Type STRING

Options Y, N
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Description Determines whether or not a device has an enable pin

Ground Ref

Property Name GNDREF

Data Type STRING

Options Y, N

Description Determines whether or not a device has a ground reference pin

Hysteresis

Property Name HYSTWD

Data Type NUMBER

Description Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name IC

Data Type NUMBER

Options 0, 1

Description Initial condition of the latch’s output

Delay

Property Name OUT_DELAY

Data Type NUMBER

Description Delay from when the input state changes until output changes

Input Resistance

Property Name RIN

Data Type NUMBER

Description Input resistance

Output Resistance

Property Name ROUT

Data Type NUMBER

Description Output resistance
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Set/Reset Level

Property Name SET_RESET_LEVEL

Data Type INTEGER

Options 0, 1

Description Determines the set / reset level of a device, 1 means active high, 0 means
active low

Threshold

Property Name TH

Data Type NUMBER

Description Threshold voltage

Output High Voltage

Property Name VOH

Data Type NUMBER

Description Output high voltage

Output Low Voltage

Property Name VOL

Data Type NUMBER

Description Output low voltage

Data Register

Clk to Output Delay

Property Name CLK_TO_OUT_DELAY

Data Type: NUMBER

Description: Delay from triggering edge of clock until output changes

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N
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Description: Determines whether or not a device has a ground reference pin

Hold Time

Property Name: HOLD_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the register’s output

Load Level

Property Name: LOAD_LEVEL

Data Type: INTEGER

Options: 0,1

Description: Determines the load level of a device, 1 means load on high, 0 means load
on low.

Minimum Clk Width

Property Name: MIN_CLK

Data Type: NUMBER

Description: Minimum valid clock width

Num. Bits

Property Name: NUMBITS

Data Type: INTEGER
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Description: Number of input or output bits of a device, depending on the device

Reset To (Async)

Property Name: RESET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
reset pin goes active

Reset To (Sync)

Property Name: RESET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
reset pin goes active

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance

Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Set/Reset Delay

Property Name: SET_RESET_DELAY

Data Type: NUMBER

Description: Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name: SET_RESET_LEVEL

Data Type: INTEGER

Options: 0, 1
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Description: Determines the set / reset level of a device, 1 means active high, 0 means
active low

Set To (Async)

Property Name: SET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
set pin goes active

Set To (Sync)

Property Name: SET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
set pin goes active

Setup Time

Property Name: SETUP_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage

Trigger Condition

Property Name: TRIG_COND

Data Type: STRING

Options: 0_TO_1, 1_TO_0

Description: Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage
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Property Name: VOH

Data Type: NUMBER

Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage

Shift Register

Clk to Output Delay

Property Name: CLK_TO_OUT_DELAY

Data Type: NUMBER

Description: Delay from triggering edge of clock until output changes

Ground Ref

Property Name: GNDREF

Data Type: S TRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin

Hold Time

Property Name: HOLD_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)
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Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the register’s output

Left/Right_Level

Property Name: LEFT_LEVEL

Data Type: INTEGER

Options: 0,1

Description: Determines the left/right level of a device, 1 means shift left on high and
shift right on low, 0 means shift left on low and shift right on high.

Load/Shift Level

Property Name: LOAD_LEVEL

Data Type: INTEGER

Options: 0,1

Description: Determines the load/shift level of a device, 1 means load on high and shift
on low, 0 means load on low and shift on high.

Minimum Clk Width

Property Name: MIN_CLK

Data Type: NUMBER

Description: Minimum valid clock width

Num. Bits

Property Name: NUMBITS

Data Type: INTEGER

Description: Number of input or output bits of a device, depending on the device

Reset To (Async)

Property Name: RESET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
reset pin goes active
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Reset To (Sync)

Property Name: RESET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
reset pin goes active

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance

Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Set/Reset Delay

Property Name: SET_RESET_DELAY

Data Type: NUMBER

Description: Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name: SET_RESET_LEVEL

Data Type: INTEGER

Options: 0, 1

Description: Determines the set / reset level of a device, 1 means active high, 0 means
active low

Set To (Async)

Property Name: SET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
set pin goes active
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Set To (Sync)

Property Name: SET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
set pin goes active

Setup Time

Property Name: SETUP_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage

Trigger Condition

Property Name: TRIG_COND

Data Type: STRING

Options: 0_TO_1, 1_TO_0

Description: Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name: VOH

Data Type: NUMBER

Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage
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Shift Register (Left)

Clk to Output Delay

Property Name: CLK_TO_OUT_DELAY

Data Type: NUMBER

Description: Delay from triggering edge of clock until output changes

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin

Hold Time

Property Name: HOLD_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the register’s output

Load/Shift Level

Property Name: LOAD_LEVEL

Data Type: INTEGER

Options: 0,1
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Description: Determines the load/shift level of a device, 1 means load on high and shift
on low, 0 means load on low and shift on high.

Minimum Clk Width

Property Name: MIN_CLK

Data Type: NUMBER

Description: Minimum valid clock width

Num. Bits

Property Name: NUMBITS

Data Type: INTEGER

Description: Number of input or output bits of a device, depending on the device

Reset To (Async)

Property Name: RESET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
reset pin goes active

Reset To (Sync)

Property Name: RESET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
reset pin goes active

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance

Output Resistance

Property Name: ROUT

Data Type: NUMBER

247
SIMPLIS Reference Manual



12.2. Advanced Component Reference

Description: Output resistance

Set/Reset Delay

Property Name: SET_RESET_DELAY

Data Type: NUMBER

Description: Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name: SET_RESET_LEVEL

Data Type: INTEGER

Options: 0, 1

Description: Determines the set / reset level of a device, 1 means active high, 0 means
active low

Set To (Async)

Property Name: SET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
set pin goes active

Set To (Sync)

Property Name: SET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
set pin goes active

Setup Time

Property Name: SETUP_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold
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Property Name: TH

Data Type: NUMBER

Description: Threshold voltage

Trigger Condition

Property Name: TRIG_COND

Data Type: STRING

Options: 0_TO_1, 1_TO_0

Description: Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name: VOH

Data Type: NUMBER

Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage

Shift Register (Right)

Clk to Output Delay

Property Name: CLK_TO_OUT_DELAY

Data Type: NUMBER

Description: Delay from triggering edge of clock until output changes

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin
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Hold Time

Property Name: HOLD_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the register’s output

Load/Shift Level

Property Name: LOAD_LEVEL

Data Type: INTEGER

Options: 0,1

Description: Determines the load/shift level of a device, 1 means load on high and shift
on low, 0 means load on low and shift on high.

Minimum Clk Width

Property Name: MIN_CLK

Data Type: NUMBER

Description: Minimum valid clock width

Num. Bits

Property Name: NUMBITS

Data Type: INTEGER

Description: Number of input or output bits of a device, depending on the device
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Reset To (Async)

Property Name: RESET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
reset pin goes active

Reset To (Sync)

Property Name: RESET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
reset pin goes active

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance

Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Set/Reset Delay

Property Name: SET_RESET_DELAY

Data Type: NUMBER

Description: Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name: SET_RESET_LEVEL

Data Type: INTEGER

Options: 0, 1

Description: Determines the set / reset level of a device, 1 means active high, 0 means
active low
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Set To (Async)

Property Name: SET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
set pin goes active

Set To (Sync)

Property Name: SET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
set pin goes active

Setup Time

Property Name: SETUP_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage

Trigger Condition

Property Name: TRIG_COND

Data Type: STRING

Options: 0_TO_1, 1_TO_0

Description: Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name: VOH

Data Type: NUMBER
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Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage

Shift Register (Multi-bit)

Clk to Output Delay

Property Name: CLK_TO_OUT_DELAY

Data Type: NUMBER

Description: Delay from triggering edge of clock until output changes

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin

Hold Time

Property Name: HOLD_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC
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Data Type: NUMBER

Description: Initial condition of the register’s output

Left/Right_Level

Property Name: LEFT_LEVEL

Data Type: INTEGER

Options: 0,1

Description: Determines the left/right level of a device, 1 means shift left on high and
shift right on low, 0 means shift left on low and shift right on high.

Load/Shift Level

Property Name: LOAD_LEVEL

Data Type: INTEGER

Options: 0,1

Description: Determines the load/shift level of a device, 1 means load on high and shift
on low, 0 means load on low and shift on high.

Minimum Clk Width

Property Name: MIN_CLK

Data Type: NUMBER

Description: Minimum valid clock width

Num. Bits

Property Name: NUMBITS

Data Type: INTEGER

Description: Number of input or output bits of a device, depending on the device

Reset To (Async)

Property Name: RESET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
reset pin goes active

Reset To (Sync)
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Property Name: RESET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
reset pin goes active

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance

Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Set/Reset Delay

Property Name: SET_RESET_DELAY

Data Type: NUMBER

Description: Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name: SET_RESET_LEVEL

Data Type: INTEGER

Options: 0, 1

Description: Determines the set / reset level of a device, 1 means active high, 0 means
active low

Set To (Async)

Property Name: SET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
set pin goes active

Set To (Sync)
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Property Name: SET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
set pin goes active

Setup Time

Property Name: SETUP_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state

Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage

Trigger Condition

Property Name: TRIG_COND

Data Type: STRING

Options: 0_TO_1, 1_TO_0

Description: Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name: VOH

Data Type: NUMBER

Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage

Barrel Shifter
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Clk to Output Delay

Property Name: CLK_TO_OUT_DELAY

Data Type: NUMBER

Description: Delay from triggering edge of clock until output changes

Ground Ref

Property Name: GNDREF

Data Type: STRING

Options: Y, N

Description: Determines whether or not a device has a ground reference pin

Hold Time

Property Name: HOLD_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant after triggering
clock edge to register as a valid change in input state

Hysteresis

Property Name: HYSTWD

Data Type: NUMBER

Description: Hysteretic-window width centered around TH (Threshold voltage)

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the register’s output

Left/Right_Level

Property Name: LEFT_LEVEL

Data Type: INTEGER

Options: 0,1

Description: Determines the left/right level of a device, 1 means shift left on high and
shift right on low, 0 means shift left on low and shift right on high.

257
SIMPLIS Reference Manual



12.2. Advanced Component Reference

Load/Shift Level

Property Name: LOAD_LEVEL

Data Type: INTEGER

Options: 0,1

Description: Determines the load/shift level of a device, 1 means load on high and shift
on low, 0 means load on low and shift on high.

Minimum Clk Width

Property Name: MIN_CLK

Data Type: NUMBER

Description: Minimum valid clock width

Num. Bits

Property Name: NUMBITS

Data Type: INTEGER

Description: Number of input or output bits of a device, depending on the device

Reset To (Async)

Property Name: RESET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
reset pin goes active

Reset To (Sync)

Property Name: RESET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
reset pin goes active

Input Resistance

Property Name: RIN

Data Type: NUMBER

Description: Input resistance
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Output Resistance

Property Name: ROUT

Data Type: NUMBER

Description: Output resistance

Set/Reset Delay

Property Name: SET_RESET_DELAY

Data Type: NUMBER

Description: Delay from time set / reset pin goes active until output is set / reset

Set/Reset Level

Property Name: SET_RESET_LEVEL

Data Type: INTEGER

Options: 0, 1

Description: Determines the set / reset level of a device, 1 means active high, 0 means
active low

Set To (Async)

Property Name: SET_TO_ASYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the asynchronous
set pin goes active

Set To (Sync)

Property Name: SET_TO_SYNC

Data Type: NUMBER

Description: Determines the value of the device to be assigned when the synchronous
set pin goes active

Setup Time

Property Name: SETUP_TIME

Data Type: NUMBER

Description: Minimum time that input data signals must remain constant before trigger-
ing clock edge to register as a valid change in input state
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Threshold

Property Name: TH

Data Type: NUMBER

Description: Threshold voltage

Trigger Condition

Property Name: TRIG_COND

Data Type: STRING

Options: 0_TO_1, 1_TO_0

Description: Determines the triggering condition of the clock pin, either the rising edge
or the falling edge

Output High Voltage

Property Name: VOH

Data Type: NUMBER

Description: Output high voltage

Output Low Voltage

Property Name: VOL

Data Type: NUMBER

Description: Output low voltage

1-Pole Discrete Filter - Operation

The transfer function in the z-domain from the input I(z) to the output O(z) for the one-pole discrete filter
is:

T (z) =
O(z)

I(z)
=
N1 · z +N0

z +D0
=
N1 +N0 · z−1

1 +D0 · z−1

The difference equation representing this transfer function is:

O(n) +D0 ·O(n− 1) = N1 · I(n) +N0 · I(n− 1)

For example, if N1, N0, and D0 have been set to 0, 0.1, and -0.99, respectively, the resulting one-pole
discrete filter will have a DC gain of 10.0 and a pole located at 0.99.

The parameters required for the discrete filter can be found in the device documentation below.
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1-Pole Discrete Filter - Parameters

D0

Property Name: D0

Data Type STRING

Description Denominator coefficient

Initial Condition

Property Name: IC

Data Type NUMBER

Description Initial condition of the filter’s output

N0

Property Name: N0

Data Type STRING

Description Numerator coefficient

N1

Property Name: N1

Data Type STRING

Description Numerator coefficient

Acquisition Time in seconds

Property Name: T_ACQ

Data Type NUMBER

Description Acquistion Time

2-Pole Discrete Filter - Operation

The transfer function in the z-domain for the two-pole discrete filter is:

T (z) =
N2 · z2 +N1 · z +N0

z2 +D1 · z +D0
=
N2 +N1 · z−1 +N0 · z−2

1 +D1 · z−1 +D0 · z−2

The difference equation representing this transfer function is:
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O(n) +D1 ·O(n− 1) +D0 ·O(n− 2) = N2 · I(n) +N1 · I(n− 1) +N0 · I(n− 2)

The parameters required for the discrete filter can be found in the device documentation.

2-Pole Discrete Filter - Parameters

D0

Property Name: D0

Data Type STRING

Description Denominator coefficient

D1

Property Name: D1

Data Type STRING

Description Denominator coefficient

Initial Condition

Property Name: IC

Data Type NUMBER

Description Initial condition of the filter’s output

N0

Property Name: N0

Data Type STRING

Description Numerator coefficient

N1

Property Name: N1

Data Type STRING

Description Numerator coefficient

N2

Property Name: N2
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Data Type STRING

Description Numerator coefficient

Acquisition Time in seconds

Property Name: T_ACQ

Data Type NUMBER

Description Acquistion Time

PID Discrete Filter - Operation

The transfer function for an analog PID filter is:

T (s) = KPA +
KIA

s
+KDAs (1)

where the A in the three coefficients KPA, KIA, and KDA are used to signify that these are the
coefficients associated with Eq. (1), which is defined for the analog PID filter.

Since (1) has two zeroes and one pole, there are more zeroes than poles, resulting in an improper transfer
function / filter. A pole is sometimes added to the derivative term to limit the bandwidth at higher
frequencies. One form for such a PID filter with a pole added for the derivative action is:

T (s) = KPA +
KIA

s
+

KDAs

γKDAs+ 1
(2)

In the discrete PID filter provided, the implemented transfer function is:

T (z) = KP +
KI

S1(z)
+

KDSD(z)

γKDSD(z) + 1
(3)

where KP , KI , and KD are coefficients entered by the user. To match the frequency response of the
discrete PID filter represented by (3) to the frequency response of the analog PID filter represented by (2),
a first-order approximation is to set

KP = KPA

KI = KIA.TSAMPLING

KD = KDA/TSAMPLING (4)

where TSAMPLING is the sampling period. If this first-order approximation is used, the frequency response
for (3) will have a very good match with the frequency response for (2), as long as the poles and zeroes of
(3) are more than two decades below the sampling frequency.

The functions SI(z) and SD(z) are transfer functions in the z-domain according to the integration and
derivative methods selected, respectively. The choices for the method are
“Forward-Euler,”“Backward-Euler,” and “Trapezoidal.”
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SI(z), SD(z) =



z − 1 Forward Euler

z − 1

z
Backward Euler

2(z − 1)

z + 1
Trapezoidal

(5)

The integration and the derivative methods are sometimes referred to as the mapping / transformation in
the literature. Mapping and transformation are easy and simple ways to generate discrete or digital filters
with frequency responses that are approximates of the frequency response of the original s-domain analog
filter. The approximation is reasonable if the poles and zeros of the original analog filter are more than two
decades below the sampling frequency.

Due to the nature of (3) and (5), the discrete PID filter has two poles in the z-domain, one from the
integration term, and one from the derivative term. The pole from the integration term is always located at
z=1 and the pole due to the derivative term is located at:

PD,Z =



γKD − 1

γKD
Forward Euler

γKD

γKD + 1
Backward Euler

γ2γKD − 1

2γKD + 1
Trapeziodal

(6)

Since the location of this pole should not yield unstable responses, at the very minimum, the restraint on
PD,Z is:

0 ≤ PD,Z ≤ 1 (7)

From (6) and (7), the restriction placed on the product YKD is:

γKD ≥


1 Forward Euler

0 Backward Euler

0.5 Trapeziodal

(8)

Once the value of PD,Z is set, Y can be computed from (6). The corresponding pole location in the
s-domain for the pole PD,Z in the z-domain is:

PD,S =
ln(PD,S)

TSAMPLING
(9)

If PD,Z is set to 0.5, the corresponding pole in the s-domain would have a corner frequency of about 0.11
of the sampling frequency.

If there are already extra low-pass filter(s) along the path of feedback, it may be desirable not to introduce
the extra pole associated with the derivative term in the discrete PID filter described here. While it is not
exactly the same as removing the extra pole, placing PD,Z at z = 0.0, the center of the origin of the
complex plane, has almost the same net effect. Such a pole will have no effect on the magnitude of the
derivative term, but it will introduce a phase delay to the derivative term. Such a phase delay is minimal
until the signal of interest is at or above one-tenth of the sampling frequency.
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If the poles and zeros of the original analog PID filter are well below the sampling frequency, then the
three integration methods yield essentially the same result and the three derivative methods yield
essentially the same result. The three methods were provided as a convenience if the user is using one of
the three mappings or transformations as a quick way to implement a discrete PID filter when the desired
analog PID transfer function has been established.

In addition, if one is using one of the three mappings, or transformations, the derivative method should be
set to the same as the integration method. The two methods are allowed to be different here in case the
user does not come from the point of view of mapping or transformation, but from the point of view of
how to implement the integration and how to derive the derivative from the input samples.

The parameters required for the discrete filter can be found in the device documentation following.

PID Discrete Filter - Parameters

Derivative Method

Property Name: DERIVATIVE_METHOD

Data Type: STRING

Options: FORWARD_EULER, BACKWARD_EULER, TRAPEZOIDAL

Description: Derivative method

Pole Factor

Property Name: GAMMA

Data Type: NUMBER

Description: Pole factor for derivative

Initial Condition

Property Name: IC

Data Type: NUMBER

Description: Initial condition of the filter’s output

Integration Method

Property Name: INTEGRATION_METHOD

Data Type: STRING

Options: FORWARD_EULER, BACKWARD_EULER, TRAPEZOIDAL

Description: Integration method

KD
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Property Name: KD

Data Type: NUMBER

Description: Coefficient

KI

Property Name: KI

Data Type: NUMBER

Description: Coefficient

KP

Property Name: KP

Data Type: NUMBER

Description: Coefficient

Acquisition Time in sec.

Property Name: T_ACQ

Data Type: NUMBER

Description: Acquisition Time
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